湖州市重兆吴兴化工有限公司地块 湖北 (公示稿) 土壤污染状况初步调查报告

洪光上原

委托单位: 湖州市重兆吴兴化工有限公司

编制单位:浙江同成环境科技有限公司

责任表

THE THE NO.

调查报告

是以河流水

编制单位: 浙江同成环境科技有限公司

采样检测单位: 杭州中一检测研究院有限公司

	V/)/			
	WHA#1	姓名	职称	**
	项目负责人	林登华	工程师	私签华
-16/2	主要编制人员情况	林登华	工程师	献遵华
	人员情况	沈彪	工程师	动物
	审核	董旭辰	工程师	本格及
	572.		3	
XIIII,			1 1 1 N	•
AllIII		1	N/	

录 目

	12/	$\mathcal{K}^{\prime\prime}$	
Λ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N	/XX
	湖州市重兆吴兴化工有限公司均	n 中土壤污热状况初先调查报告	<i>1</i> /2/2
_	柳川市至先天八九工有限公司和	65人工祭门宋代记67岁 阿直18日	
	/0.=\		
		录	*
		A Y V	
I	前言		.1
	1.1 项目背景		.1
	1.2 地块基本情况		.1
	1.3 执行结果说明		.2
2	概述		.3
	2.1 调查目的	-40, 11	3
	2.2 调查原则		.3
	2.3 调查依据	= //	.3
١,		(6 = V)	
•		,	
		/	, Y \ /
3	地块基本情况		11
	3.1 地理位置		11 人人人
	3.2 区域自然环境概况		11
	3.2.1 地形地貌		11
			13
			14
			17
			23
	3.4 地块土地利用历史及现状		25 26
	3.4.1 地块历史变迁情况		26
			32
۸			
K			
	3.6.1 场地历史用地概况		35
	3.0.3 地 块干田中直情况	2	39 11
	3.71 污染区域识别		11 - 1
	3.7.2 污染因子识别		43
	3.8 相邻地块污染源调查分析		43
	3.9 现场踏勘与人员访谈		14
	3.10 第一阶段土壤污染状况调查总结		46
4	地块初步调查工作方案		17
			The state of the s
	4.1.3 地下水布点方案		50
	4.2.2 恒侧月法		50
	4.3 刀禾图甲及修以用饥饥奶		J7

	湖州市重兆吴兴化工有限公司地块	2.土壤污染状况初步调查报告	
(1)			
		6	0
		6	~
	5.2 土壤钻探		2
	5.2.2 土壤钻探过程		2
	5.3 现场采样过程	7 7 1	4
	5.3.1 土壤样品采集		4
	5.3.2 地下水样品采集		7
	5.3.3 现场实际采样情况		
	5.3.4 样品保存与运输		6
	5.4 实验室化学分析检测	7	7
	5.5.1 采样准备质量控制		
	5.5.2 现场采样质量控制		
, (K)	5.5.3 样品流转质量控制		
	5.5.4 实验室分析质量控制		A
	5.5.5 质控总结	8	1
	6 地块调查结果与评价	8	3
	6.1 水文地质条件	8	3
		8	
	6.1.2 地下水特征	8	3
	6.2 评价标准		
	6.2.1 土壤评价标准		
	6.2.2 地下水评价标准		
	6.3 土壤检测结果与评价分析 6.3.1 现场快筛结果	8	
	6.3.2 土壤检测结果汇总		
	6.3.3 土壤检测结果分析和评价		-
	6.4 地下水检测结果与评价分析	9	2
1	6.4.1 地下水检测结果汇总		
	6.4.2 地下水检测结果分析和评价		
1	6.5 检测分析结论	A VA V 7 -	
	6.5.1 土壤结果分析和评价		
5	7 结论		
	7.1 土壤状况调查结论		
	7.1.1 第一阶段土壤污染状况调查结果		
	7.1.2 第二阶段土壤污染状况调查结果 7.1.3 总体结论		<i></i>
	7.2 建议		
	7.3 不确定性分析		
	IV. X		
		X/(2)	
	A. 1		
	VT	A117	<u> </u>
	<i>γ</i> -λ∇′	ARL V	λ
	180.1	NOV	X\.
A 4		1(2)	- XX-1
. /	√ .//	χ'\Υ'	W >1

1 前言

1.1 项目背景

湖州市重兆吴兴化工有限公司地块位于湖州市南浔区和孚镇横港村,地块东侧为小河,河对面为农田,南侧为湖州卫青纺织有限公司,西侧为小路,路外侧为农田,北侧为小路,路外侧为农田。该地块所有者为湖州市重兆吴兴化工有限公司,该公司成立于 1995 年,是一家从事漂白粉生产的企业,2017 年 9 月停产并拆除生产设备,2022 年 8 月厂区出租于湖州安东新型建材有限公司用于实施年产 6000 万块混凝土标准砖建设项目。根据地块土地使用证(湖土集用(2001)字第 44-135 号),用地红线面积为 2274.1 平方米,实际总用地范围面积约为 6500 平方米,本次调查以实际用地面积为调查对象。

根据《湖州市生态环境局南浔分局关于做好南浔区 2022 年疑似污染地块名录信息共享的函》(2022.12.20),"湖州市重兆吴兴化工有限公司"被列入南浔区 2022 年疑似污染地块名录。根据《污染地块土壤环境管理办法》(环境保护部令第 42 号)的相关要求,对列入疑似污染地块名单的地块,需土壤环境初步调查调查报告。

为落实国家政策要求,摸清地块污染情况,科学有效地消除地块污染,确保地块及周边人群和环境的健康安全,2023年3月,受湖州市重兆吴兴化工有限公司委托,浙江同成环境科技有限公司在对湖州市重兆吴兴化工有限公司调查地块进行资料收集、现场勘察以及人员访谈的基础上,编制初步调查的工作方案,并委托杭州中一检测研究院有限公司对调查地块进行了样品的采集和分析,在此基础上最终编制完成了《湖州市重兆吴兴化工有限公司地块土壤污染状况初步调查报告》。

1.2 地块基本情况

调查地块名称: 湖州市重兆吴兴化工有限公司地块;

调查地块面积: 6500m²;

地理位置: 湖州市南浔区和孚镇横港村;

土地使用权人: 湖州市重兆吴兴化工有限公司;

地块土地利用类型:工业用地;

土壤污染状况初步调查单位: 浙江同成环境科技有限公司。

1.3 执行结果说明

根据第一阶段调查结果,本地块存在一定的土壤污染风险与隐患,需对该地块进行初步采样分析工作,我单位工作组在第一阶段调查结果的基础上,编制了布点采样方案,并根据方案进行土壤、地下水采样和实验室分析,最终汇总编制成本地块的土壤污染状况调查报告,报请审查。

本次土壤污染状况初步调查共布设 7 个土壤采样点位(其中 1 个对照土壤采样点位),共计送检 31 个土壤样品(其中 3 个土壤平行样)。地块内所有点位土壤采样点位的样品中检测因子(重金属及无机物、挥发性有机污染物、半挥发性有机污染物、石油烃(C₁₀~C₄₀)、氯、锡)均低于《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选值、美国 EPA 通用土壤筛选值。地块外对照点土壤样品中,所检出物质的种类与地块内土壤样品中检出物质种类基本一致,且浓度均未超过相关评价标准。

本次土壤污染状况初步调查共布设 4 个地下水采样点位(其中 1 个对照地下水采样点位),共计送检 5 个地下水样品(其中 1 个地下水平行样)。根据检测结果,地块内除总硬度、硫酸盐、耗氧量、氨氮、菌落总数、氯化物、锰外其余地下水的检测因子均低于《地下水质量标准》(GB/T 14848-2017)IV 类标准、《上海市建设用地地下水污染风险管控筛选值补充指标》中第二类用地地下水筛选值以及美国EPA 通用筛选值地下水标准执行。地块外对照地下水样品中,所检出物质与地块内地下水样品中检出物质种类基本一致,且除菌落总数外其余浓度均未超过相关评价标准。

综上所述,湖州市重兆吴兴化工有限公司地块目前为工业用地性质,土壤环境 状况按照二类用地标准评价。根据上述调查结果,湖州市重兆吴兴化工有限公司地 块土壤环境现状满足工业用地(第二类用地)需求,无需开展进一步土壤污染状况 详细调查工作。

2 概述

2.1 调查目的

分析确定本地块是否受到污染,防止地块对人居健康和环境质量带来严重影响; 摸清地块土壤和地下水环境质量状况底数,为相关部门了解地块环境状况提供依据。

2.2 调查原则

本次地块调查与评价工作遵循以下原则:

(1) 针对性原则

针对地块污染特征和潜在污染物特征,进行污染浓度和空间分布的初步调查, 为地块的环境管理以及下一步可能需要的地块环境调查工作提供依据。

(2) 规范性原则

采用程序化和系统化的方式开展地块环境初步调查工作,尽力保证调查过程的科学性和客观性。

(3) 可操作性原则

综合考虑调查方法、时间、经费等,结合现阶段地块实际情况,使调查过程切实可行。

2.3 调查依据

2.3.1 法律法规和政策文件

- (1)《中华人民共和国环境保护法》(2014年4月24日修订);
- (2)《中华人民共和国土壤污染防治法》(2019年1月1日实施);
- (3)《中华人民共和国固体废物污染环境防治法》(2020年4月29日修订)。
- (4)《中华人民共和国水污染防治法》(2017年6月27日修订);
- (5) 《关于印发<土壤污染防治行动计划>的通知》(国发[2016]31号);
- (6) 《地下水管理条例》(中华人民共和国国务院令第748号):
- (7) 《污染地块土壤环境管理办法(试行)》(环保部令第42号);
- (8) 《关于贯彻落实土壤污染防治法推动解决突出土壤污染问题的实施意见》

(环办土壤[2019]47号);

- (9)《关于印发<建设用地土壤污染状况调查、风险评估、风险管控及修复效果评估报告评审指南>的通知》(环办土壤[2019]63号):
- (10)《关于印发<地下水环境状况调查评价工作指南>等 4 项技术文件的通知》 (环办土壤函[2019]770号);
- (11)《浙江省人民政府关于印发浙江省土壤污染防治工作方案的通知》(浙政发[2016]47号);
 - (12) 《浙江省固体废物污染环境防治条例》(2022年9月29日修订);
 - (13) 《浙江省水污染防治条例》(2020年11月27日修订);
 - (14) 《浙江省污染地块开发利用监督管理暂行办法》(浙环发[2018]7号);
- (15)《浙江省土壤、地下水和农业农村污染防治"十四五"规划》(浙江省 发改规划[2021]250号);
- (16)《关于印发<浙江省建设用地土壤污染风险管控和修复"一件事"改革方案>的通知》(浙环发[2021]20号);
- (17)《关于印发<浙江省建设用地土壤污染风险管控和修复监督管理办法>的通知》(浙环发[2021]21号);
- (18)《湖州市人民政府关于印发湖州市土壤污染防治工作实施方案的通知》 (湖政发[2017]27号);
- (19)《关于贯彻落实土壤污染防治法切实做好土壤污染状况调查工作的通知》 (湖环发[2019]31号)。

2.3.2 相关技术导则、规范及标准

- (1) 《建设用地土壤污染状况调查技术导则》(HJ25.1-2019);
- (2)《建设用地土壤环境调查评估技术指南》(环境保护部公告 2017 年第 72 号);
 - (3)《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019);
 - (4) 《建设用地土壤污染风险评估技术导则》(DB33/T892-2022);
 - (5) 《土壤环境监测技术规范》(HJ/T166-2004):

- (6) 《地下水环境监测技术规范》(HJ 164-2020);
- (7)《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018);
- (8) 《地下水质量标准》(GB/T 14848-2017);
- (9) 《地块土壤和地下水中挥发性有机物采样技术导则》(HJ1019-2019);
- (10)《上海市建设用地土壤污染状况调查、风险评估、风险管控与修复方案编制、风险管控与修复效果评估工作的补充规定(试行)》(2020年)。

2.3.3 其他文件资料

- (1)《横港村农民集聚房岩土工程勘察报告》(2019.07);
- (2) 其他相关技术资料。

2.4 调查范围

本次调查范围为湖州市重兆吴兴化工有限公司地块,实际总用地范围面积约为6500平方米,其中当地自然资源部门出具的用地红线面积为2274.1平方米,具体调查范围以总用地范围为准,具体见图2.4-1,用地红线图见图2.4-2,地块边界拐点坐标见表2.4-1。

	1/2 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4. 20.64				
/户 口.	坐标(2000 国家大地坐标系)					
编号	X	Y				
J1	3401640.350	523403.134				
J2	3401623.121	523410.886				
Ј3	3401623.742	523413.013				
J4	3401598.205	523423.976				
J5	3401565.588	523436.284				
Ј6	3401551.319	523389.229				
Ј7	3401552.549	523388.428				
Ј8	3401542.010	523357.060				
Ј9	3401597.378	523327.145				
J10	3401606.312	523328.456				

表 2.4-1 地块边界拐点坐标一览表

图 2.4-1 本次调查地块范围示意图

图 2.4-2 本次调查地块用地红线图

2.5 调查工作程序及调查内容

根据《建设用地土壤污染状况调查技术导则》(HJ25.1-2019)和《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019),地块环境调查可分为三个阶段,本次调查为第一阶段和第二阶段的初步采样分析工作。调查方法为:在资料收集分析、现场踏勘和人员访谈的基础上,合理布设调查点位,制定初步采样分析工作计划。本次调查的工作内容和程序见下图:

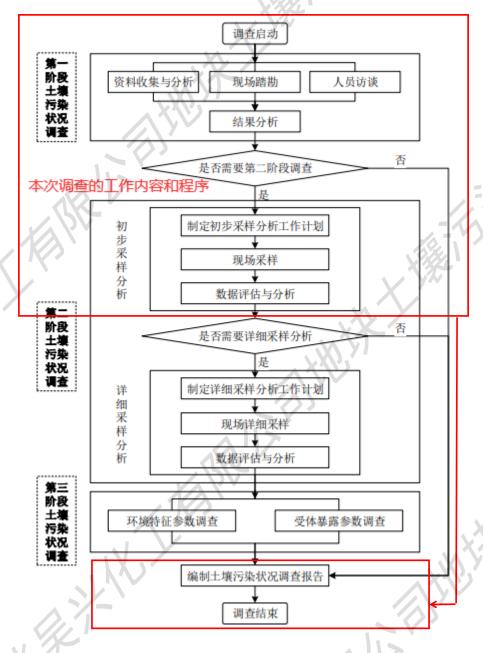


图 2.5-1 本项目地块环境调查的工作内容和程序

(1) 第一阶段土壤污染状况调查

第一阶段土壤污染状况调查是以资料收集、现场踏勘和人员访谈为主的污染识别阶段,原则上不进行现场采样分析。若第一阶段调查确认地块内及周围区域当前和历史上均无可能的污染源,则认为地块的环境状况可以接受,调查活动可以结束。

(2) 第二阶段场土壤污染状况调查

第二阶段土壤污染状况调查是以采样与分析为主的污染证实阶段。若第一阶段 土壤污染状况调查表明地块内或周围区域存在可能的污染源,如化工厂、农药厂、 冶炼厂、加油站、化学品储罐、固体废物处理等可能产生有毒有害物质的设施或活 动;以及由于资料缺失等原因造成无法排除地块内外存在污染源时,进行第二阶段 土壤污染状况调查,确定污染物种类、浓度(程度)和空间分布。

根据初步采样分析结果,如果污染物浓度均未超过国家和地方等相关标准的浓度限值及清洁对照点浓度,并且经过不确定分析确认不需要进一步调查后,第二阶段地块环境调查工作可以结束,否则认为可能存在环境风险,必须进行详细调查。详细采样分析是在初步采样分析的基础上,进一步加密采样和分析,确定地块污染程度和范围。

第二阶段土壤污染状况调查通常可以分为初步采样分析和详细采样分析两步进行,每步均包括制定工作计划、现场采样、数据评估和结果分析等步骤。初步采样分析和详细采样分析均可根据实际情况分批次实施,逐步减少调查的不确定性。

根据初步采样分析结果,如果污染物浓度均未超过 GB 36600 等国家和地方相关标准以及清洁对照点浓度(有土壤环境背景的无机物),并且经过不确定性分析确认不需要进一步调查后,第二阶段土壤污染状况调查工作可以结束;否则认为可能存在环境风险,须进行详细调查。标准中没有涉及到的污染物,可根据专业知识和经验综合判断。详细采样分析是在初步采样分析的基础上,进一步采样和分析,确定土壤污染程度和范围。

(3) 第三阶段场土壤污染状况调查

第三阶段土壤污染状况调查以补充采样和测试为主,获得满足风险评估及土壤 和地下水修复所需的参数。本阶段的调查工作可单独进行,也可在第二阶段调查过 程中同时开展。 本次工作内容不包含第三阶段。通过第一阶段土壤污染状况调查的结果分析, 启动第二阶段土壤污染状况调查。通过第二阶段土壤污染状况的初步采样分析,得

3 地块基本情况

3.1 地理位置

湖州市重兆吴兴化工有限公司地块位于湖州市南浔区和孚镇横港村,地块中心 坐标为北纬 30°44'5.53"、东经 120°14'39.26",具体地理位置见下图 3.1-1。

3.2 区域自然环境概况

3.2.1 地形地貌

湖州市整个地势自西南向东北倾斜。以湖州市区为中心大致可划分东西两部分,西南部丘陵地区,由天目山脉向北延伸入境组成丘陵地形,平均海拔在100m~200m之间,东北部是大片河流冲积与湖沼淤积的平原,地势较低平,土壤肥沃,水网密布,桑陌纵横,地势低洼,平均海拔高程仅1.5~2.5m左右(黄海高程),属于长江三角洲冲积平原的一部分。

该区域地处太湖南岸,是杭嘉湖平原的一个组成部分。西南分区地处水网平原,北、南、西三面为旄儿港和西苕溪所包围。区内除西北部有小山体外,地势低平,河网密布。区内除现有工程建设用地外,一般为农田,高程 1.8~2.2m(黄海标高,下同)。现状建成区及村镇建设用地经人工回填后地面高程 3.2~4.0m 之间。西区内外大地构造受造山运动期的苏州一湖州城西一莫干山大断裂(北东向)控制,同时受北西向仁皇山一宁杭公路北侧小断层影响,形成棋盘格状的构造体系,地层从老到新十分完整,出露地表主要为第四纪沉积物。本区地震基本烈度为六度。

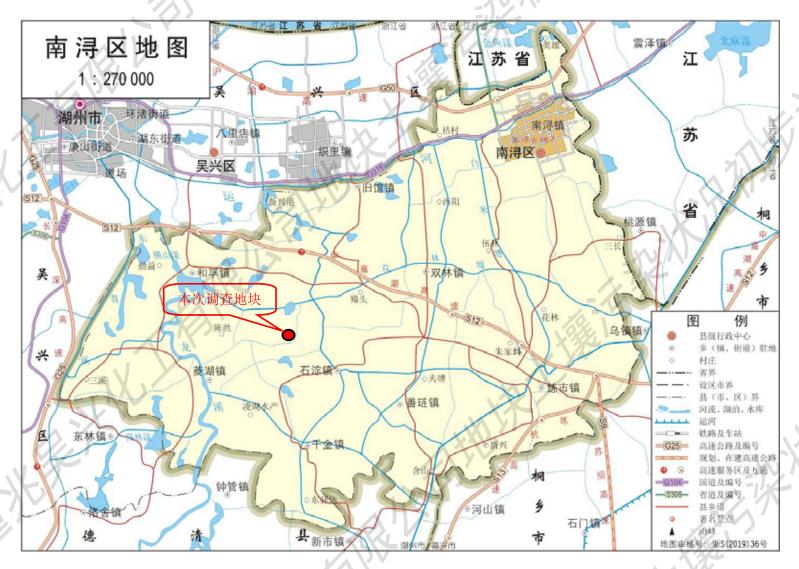


图 3.1-1 地块地理位置示意图

3.2.2 气候特征

本区域属亚热带季风气候区,夏半年(四~九月)主要受温暖湿润的热带海洋气团的影响,冬半年(十~三月)主要受干燥寒冷的极地大陆气团的影响,总的气候特点:全年季风型气候显著、四季分明、气候温和、空气湿润、雨量充沛、日照较多,无霜期长,由于地处中纬,冬夏季长、春秋季短、夏季炎热高温、冬季寒冷干燥,春秋二季冷暖多变,春季多阴雨,秋季先湿后干。年平均气温为 17.8℃,最热月(八月)平均气温 30.8℃,最冷月(十二月)平均气温为 6.2℃,最热月与最冷月气温之差平均为 24.6℃,历年极端最高气温 39℃,极端最低气温-11.1℃,年平均无霜期为 249 天。年平均降水量 1391.3mm,年平均雨日 144 天,全年以六~九月降水量最为集中,约占全年的 52%,历年最大降水量 1734.9mm(1977年),一日最大降水量为 172.6mm(1962.9.6),年平均蒸发量 1359.3mm。

全年各月空气都比较湿润,年平均相对湿度为80%,最大出现在9月为85%,极端最小为10%,其日变化,湿度最大值一般出现在夜间至早晨,最小值出现在午后。全年主导风向为东南偏东风,东南风次之,年平均风速为2.1m/s。

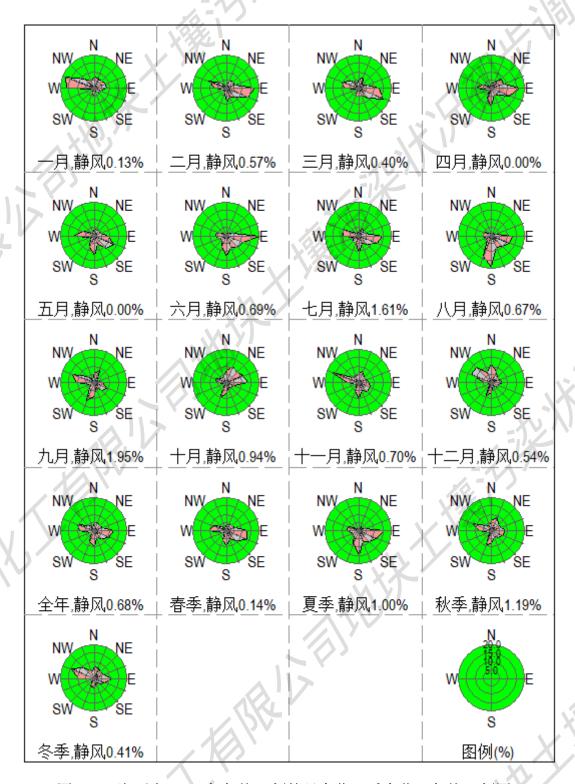


图 3.2-1 湖州市 2020 年年均风频的月变化、季变化及年均风频图

3.2.3 水系

湖州市区为典型的平原水网特征,区内水网密集,河道纵横,湖泊星罗棋布,主要河流有自西南向东北入太湖的东苕溪、西苕溪、泗安溪、合溪、乌溪等,自西

向东汇运河入黄浦江的頔塘、双林塘、练市塘等。湖州市区是东、西苕溪入太湖的 汇合处,又有頔塘与京杭大运河连接,构成了湖州市东北平原纵横的水网,具有典 型的江南水乡特色。

本地块所在区域地表水主要为排塘港支流-施吴桥港,最终汇入排塘港(杭嘉湖55),根据《浙江省水功能区、水环境功能区划分方案(2015)》,其水功能区为排塘港湖州农业用水区。排塘港水质引用2020年4月~6月石淙镇河流断面入境出境常规监测数据,监测结果见表3.2-1。

表 3.2-1 地表水环境质量现状监测数据

单位:除pH值外,均为mg/L

1	.l. (> 1÷	Nor That			监测项	į目			水质类	超标因
时间	出/入境	断面名称	流向	悬浮物	COD_{Mn}	氨氮	总磷	浊度	别	子
	入境	圆通寺桥 (羊河坝)	顺流	36	3.83	0.4565	0.099	36	III	/
2020年 4月	出境	新通济塘 桥	顺流	53	4.18	0.566	0.124	58	III	/
	镇区监 测点	恒盛大桥	顺流	53	4.18	0.566	0.124	58	III	-/
	入境	圆通寺桥 (羊河坝)	顺流	61	4.55	0.138	0.185	258	III	-1
2020年 5月	出境	新通济塘 桥	顺流	68	4.75	0.088	0.129	91	Ш	/
	镇区监 测点	恒盛大桥	顺流	69	4.32	0.103	0.155	151	III	/
1/2	入境	圆通寺桥 (羊河坝)	顺流	64	4.49	0.107	0.194	134	III	/
2020年 6月	出境	新通济塘 桥	顺流	71	4.13	0.122	0.144	55	III	/
	镇区监 测点	恒盛大桥	顺流	72	4.65	0.116	0.199	121	III	/

监测结果表明,排塘港水体各指标均能达到《地表水环境质量标准》(GB3838-2002)中III类标准。

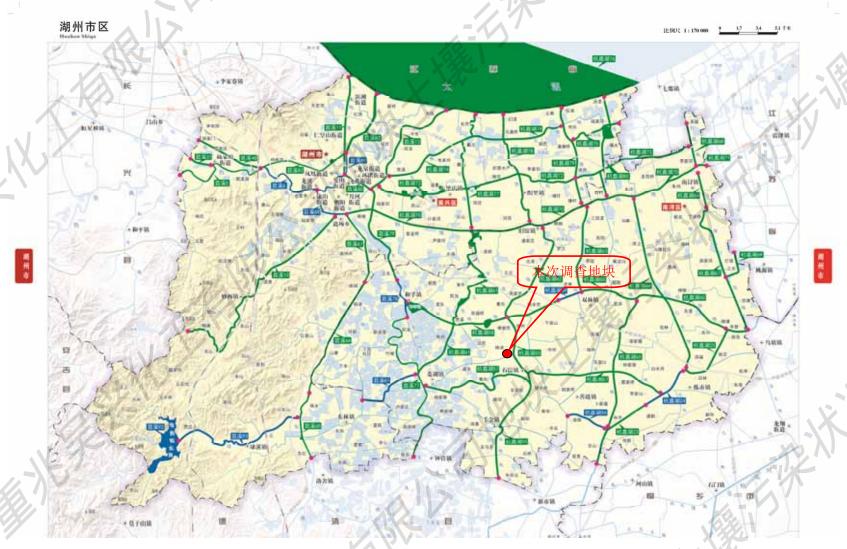


图 3.2-2 水功能区划图

3.2.4 水文地质

由于调查地块尚未进行岩土工程勘察,故本次调查地块水文地质资料引用地块 北侧由核工业江西工程勘察研究总院编制的《横港村农民集聚房岩土工程勘察报告》 (2019.7)。引用地块勘探点位于本地块东北侧约 270 米,两个地块之间地质相似, 无明显变化,因此引用的地勘资料可以作为本地块地勘的参考依据。本地块与勘探 点位的位置关系见图 3.2-3。



图 3.2-3 本地块与引用地块相对位置关系图

3.2.4.1 地下水

场地地下水位孔隙潜水和孔隙承压水。孔隙潜水静止水位埋深为-0.10~0.00m 左右,高程为 1985 国家高程 1.58~1.68m 左右,赋存于上部①层素填土和②层淤泥质粉质粘土中。孔隙承压水静止水位埋深为 1.50~1.80 左右,标高为 1985 国家高程-0.33~-0.19m 左右,赋存于④-1 层粉土中,水量一般,以侧向补给为主,排泄方式为深井抽水。地下水的补给主要来源于大气降水和河道补给,排泄方式为渗流与蒸发。场地地下水水位受季节及年份的变化有升降,变化幅度在 0.5~1.0 米。近 3~5 年历史最高地下水位为 2.80 米左右(1985 国家高程)。据附近水文资料,本区域历史最高洪水位为 3.05 米左右(1985 国家高程)。

3.2.4.2 工程地质特征

各土层地质特征概述如下:

① 素填土

层厚 0.70~1.10 米, 层顶高程 1.48~1.62 米。全厂分布。杂色, 松软。以粘性土为主, 局部植物根系较多。成分杂, 均匀性差。为新近填土, 堆填年代为 1~2 年。

② 淤泥质粉质粘土

层厚 0.90~1.80, 层顶高程 0.45~0.86 米。全场分布。灰色,流塑。含较多有机质、腐殖质和残植。高压缩性。

③ 粉质粘土

层厚 4.50~6.30 米, 层顶高程-1.22~-0.16 米。全场分布。灰黄色, 软可塑~可塑。含铁锰质色斑和砂质斑点。摇振反应无,稍有光泽,干强度中等,韧性中等,中压缩性。

④-1 粉土

层厚 4.20~6.50 米, 层顶高程-7.28~-4.91 米。全场分布。灰色,湿,中密。含云母屑。摇振反应迅速,无光泽,干强度低,韧性低,中压缩性。

④-2 粉质粘土

层厚 5.80~7.90 米, 层顶高程-11.62~-10.65 米。全场分布。灰色, 软塑。含砂质斑点。摇振反应无, 稍有光泽, 干强度中等, 韧性中等, 高压缩性。

4-3 粘土

层厚 6.80~11.10 米, 层顶高程-18.98~-17.38 米。全场分布。灰色, 软塑。含有机质。摇振反应无, 有光泽, 干强度高, 韧性高, 高压缩性。

⑤粉质粘土夹砂

未揭穿,最大钻进厚度 9.20 米,层顶高程-29.00~-24.24 米。全场分布。青灰色。 粉质粘土呈软可塑状,夹稍密状粉砂。含铁锰质色斑和结核。摇振坟茔缓慢,稍有 光泽,干强度中等,韧性中等,中压缩性。

地块勘探点平面位置见图 3.2-4, 工程地质剖面见图 3.2-5、3.2-6。

退以同期

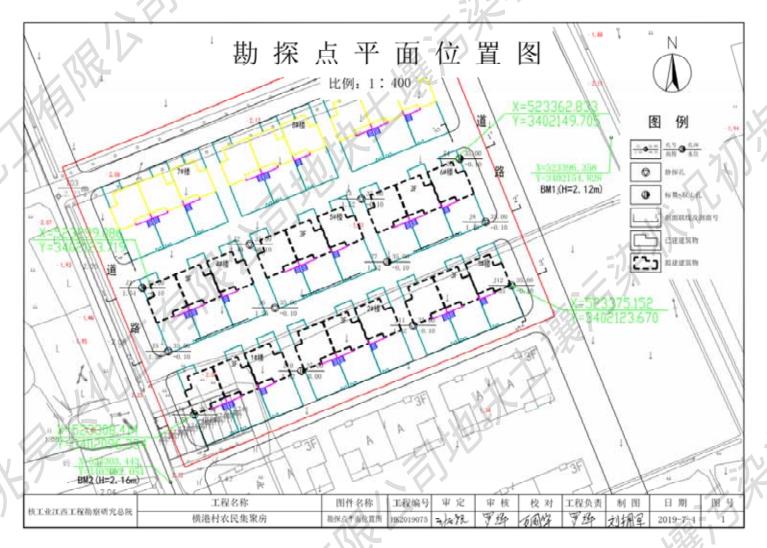


图 3.2-4 勘探点平面位置图

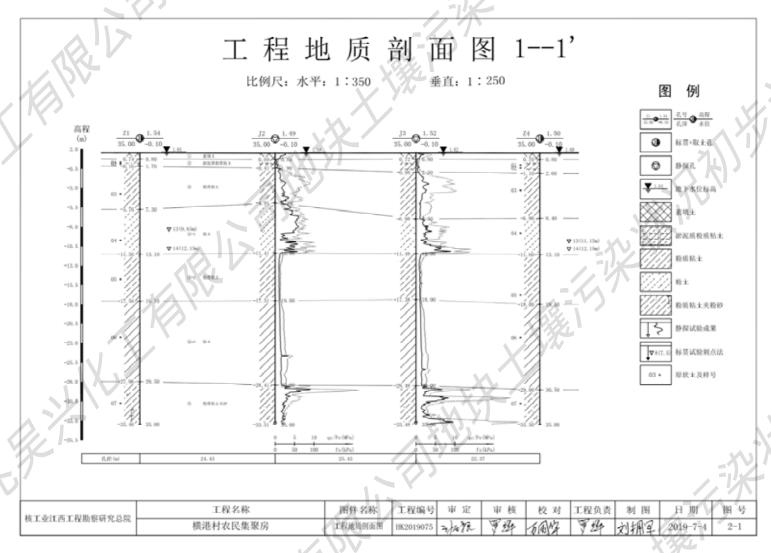


图 3.2-5 工程地质剖面图(1-1')

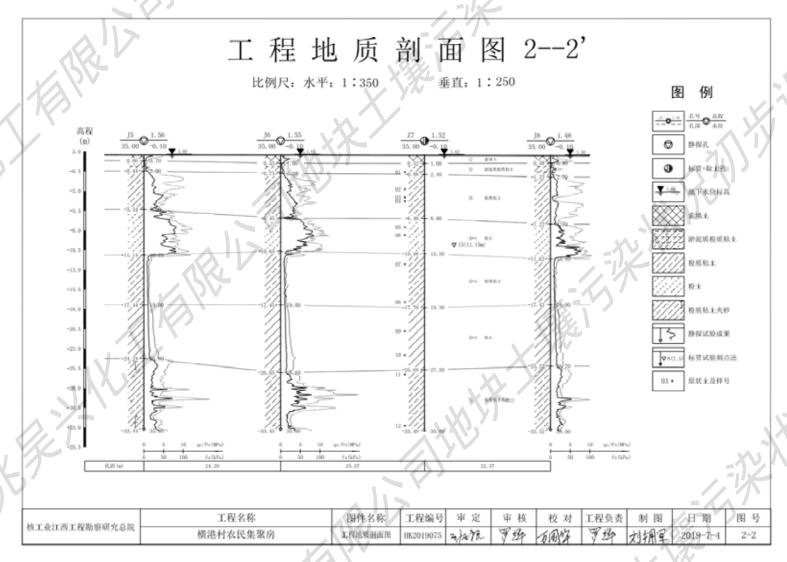


图 3.2-6 工程地质剖面图(2-2')

3.2.5 和孚镇社会经济环境

和孚镇隶属于南浔区,位于湖州市东南、南浔区西部,地理位置优越,交通便利。南距杭州80公里,东接上海150公里,北临湖州市区仅9公里,湖盐公路、和菱公路,申嘉湖黄金水道、杭湖锡航线穿镇而过,申嘉湖高速公路湖州东出口距离镇区仅2.5公里,即将建成后的高铁湖州东站离镇区仅3公里。

2001年6月由原和孚、长超、重兆三镇合并而成。全镇区域面积97平方公里,总人口约5.4万,其中农业人口4.9万,下辖22个行政村、3个社区。曾荣获国家级生态镇、省级文明镇、省级卫生镇、小城镇环境综合整治行动省级样板镇等荣誉称号。2015年,获港景区被评为国家"AAAA"级旅游景区,2017年,"浙江湖州桑基鱼塘系统"被正式认定为全球重要农业文化遗产。

和孚镇具有江南水乡平原地区难得的自然环境优势,素有"丝绸之府、鱼米之乡"之美誉。和孚历史悠久,人杰地灵,古文化丰富,人文景观独特。早在新石器朝代,就有先人在此繁衍生息。境内文物古迹众多,著名古迹有"南苕胜境"、"演教寺"、"三瑞堂"等。荻港、袁家汇二座古镇小桥流水、回廊曲巷,可与周庄、乌镇、南浔等媲美。和孚镇历代名人辈出,中国地质事业创始人之一章鸿钊,外交家章祖申,银行家朱五楼,著名诗人朱渭深,音乐家陈啸空、邱望湘,北洋政府章宗元、章宗祥等,均是和孚人。

和孚传统农业发达,尤以水产养殖业、苗种业闻名全国。全镇规上企业达102家。目前,和孚已形成了以新型纺织、装备制造、精细化工、新型建材为主导的四大工业门类,建成了丝绸、化工、综合三大工业园区。优越的区位优势,独特的人文景观,加上完善的配套服务,良好的基础设施,不断发展的和孚吸引着众多的中外来宾。

2021年全镇预计实现财政总收入7亿元,同比增长15%;全社会固定资产投入13.8亿元,同比增长23.66%,其中工业性投入完成12.8亿元,同比增长48.49%;规上工业总产值达到98.19亿元,同比增长20%;农民人均收入4.34万元,增幅10%。

3.3 敏感目标

经过实地踏勘调查,地块周边1000m范围内的敏感目标主要以宅基地为主,其次

有地表水,周围主要环境保护目标平面位置见图3.3-1,具体信息见表3.3-1

地块周围主要敏感点情况 表 3.3-1

序号					
	保护目标	实际方 位	与地块最近 距离(m)	规模	保护级别
1	横港村陆家湾自然村	E	430	约 95 人	
2	横港村方家木桥自然村	NE	320	约55人	
3	横港村李蔡家湾自然村	Е	230	约 59 人	
4	横港村蔡家兜自然村	W	10	约91人	
5	横港村白湾兜自然村	N	260	约 226 人	
6	横港村戴家坝自然村	W	500	约 247 人	
7	镇西村方家兜自然村	S	360	约 300 人	《环境空气质量标
8	镇西村施吴村自然村	SE	830	约100人	准》(GB3095-2012 二级标准
9	横港村陆家角自然村	N	670	约 72 人	
10	横港村於家湾自然村	N	770	约 209 人	. \
11	横港村木池兜自然村	NE	700	约 217 人	
12	横港村邱家兜自然村	NW	690	约 212 人	=1)2/
13	横港村渔家兜自然村	NE	950	约130人	- //
14	横港村外庄自然村	NW	850	约 56 人	69.1
15	排塘港支流-施吴高桥港	S	140	/	《地表水环境质量 标准》(GB3838- 2002)III 类标准
				<i>B</i> .	
		TE SE			

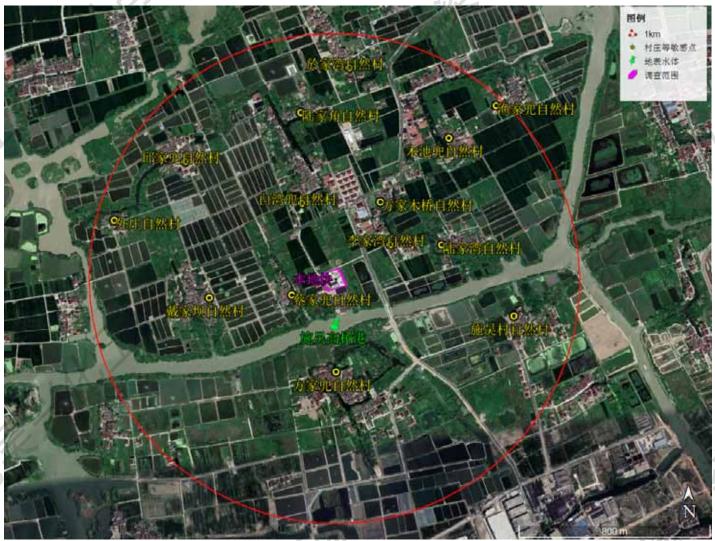
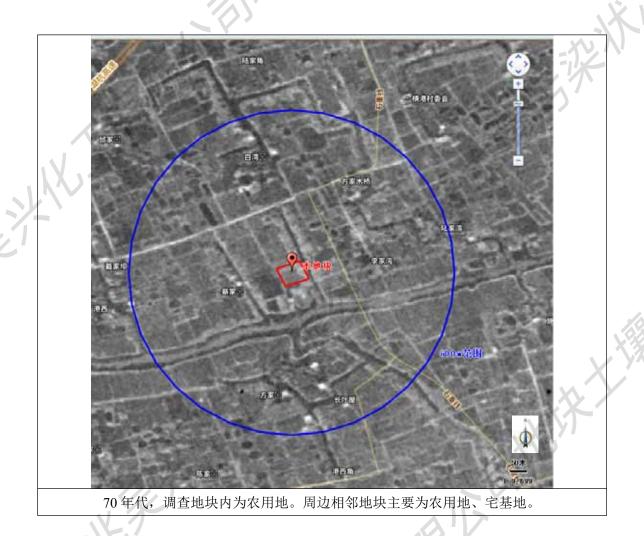
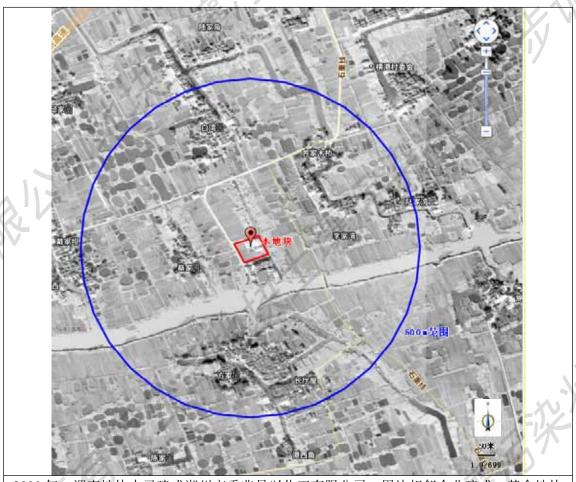


图 3.3-1 地块周围主要环境保护目标位置示意图


3.4 地块土地利用历史及现状


3.4.1 地块历史变迁情况

根据在生态环境部门收集到的环保资料、相关人员访谈、查阅历史卫星图片以及现场踏勘,本地块的用地历史概况见表 3.4-1,地块详细历史变迁卫星图详见图 3.4-1,本次卫星图像截取至最新更新时间 2019 年。

	₹ ₹ ₹ ₹	,,,		
序号	用地历史	成立时间	用地时间	生产经营类型
1	桑树地	70 年代	70 年代~1994 年	/
2	湖州市重兆吴兴化工有限公司	1995年	1995 年~至今	漂白粉生产,于 2017年停产并拆 除生产设备

表 3.4-1 调查地块用地历史一览表

2000年,调查地块内已建成湖州市重兆吴兴化工有限公司,周边相邻企业建成,其余地块基本未发生变化。

限以高端。

29

图 3.4-1 地块历史变迁卫星图

3.4.2 地块现状

根据现场踏勘,地块内湖州市重兆吴兴化工有限公司已于 2017 年 9 月停产,现状大部分厂房已拆除,厂区内无地下建筑设施、管线和沟渠分布,调查地块现场土壤无异味,且未发现污染痕迹,目前场地已出租于湖州安东新型建材有限公司用于实施年产 6000 万块混凝土标准砖建设项目。调查地块现场土壤无异味,且未发现污染痕迹。

现场踏勘照片见图 3.4-2。

地块内东侧已拆除部分厂房, 生产设备已拆除, 现状为安东建材生产车间

地块内南侧厂房已拆除

地块内西侧仓库,未拆除,现状为闲置状态

地块内北侧厂房已拆除, 现状为安东建材产品堆放场地

图 3.4-2 地块现状照片

3.5 相邻地块土地使用情况

根据相关人员访谈、查阅历史卫星图片和现场踏勘,湖州市重兆吴兴化工有限公司地块周边主要为村民住宅、农田、河流等。地块东侧为小河,河对面为农田,南侧为湖州卫青纺织有限公司,西侧为小路,路外侧为农田,北侧为小路,路外侧为农田。周边可能的污染源主要为周边工业企业的生产活动。对地块周边工业企业进行调查,周边企业分布见图 3.5-1,周边企业具体信息见表 3.5-1。

		75 上 70 / 10 / 10 / 10		
序号	企业名称	成立时间	经营范围	方位/距离
1	湖州卫青纺织有限公司	成立于 2020 年	纺织品织造	南/紧邻
2	湖州文华丝绸有限公司	成立于 2000 年(己于 2010 年关停)	纺织品织造	南/30
3	湖州宏丽达绸厂	成立于 2004 年(已于 2020 年关停)	纺织品织造	东北/180

表 3.5-1 调查场地周边企业信息一览表

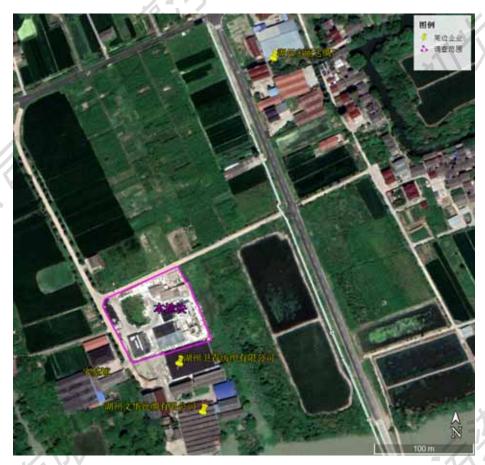


图 3.5-1 相邻地块土地利用分布图

3.6 地块内污染源调查分析

本阶段工作主要是以相关资料的收集为目的,识别地块是否可能存在污染的阶段。需要调查的资料包括:地块环境资料、地块相关记录、有关政府文件,地块历史用地类型、地块涉及的历史企业资料以及地块所在区域的自然和社会信息。当调查区域与相邻地块存在相互污染的可能时,需要调查相邻地块的相关记录和资料。

本次调查主要通过已收集到的环评资料、人员访谈的方式对企业的生产情况和疑似污染情况进行分析。

3.6.1 场地历史用地概况

本次调查地块 1995 年之前为横港村农用地,主要用于种植桑树,1995 年湖州市 重兆吴兴化工有限公司建成投产,2017 年 9 月至今企业停产并已拆除全部生产设备, 2022 年 8 月企业厂区整体出租于湖州安东新型建材有限公司用于实施年产 6000 万块 混凝土标准砖建设项目。

3.6.2 湖州市重兆吴兴化工有限公司

湖州市重兆吴兴化工有限公司在本地块生产经营时间为 1995 年~2017 年,主要生产漂白粉。根据收集到的环评资料《湖州市重兆吴兴化工有限公司生大精细化工厂无机精细化工产品技改项目环境影响报告表》(2002 年)和《湖州市重兆吴兴化工有限公司年产 5000 吨漂白粉技改项目环境影响报告书》(2009 年)内容,对企业的生产情况和疑似污染情况进行分析。

(1) 企业历史产品审批及实施情况

序号 产品名称		产量	实施情况
1 精制钒酸铵		2t/a	一直未投产
2 磷酸盐		20t/a	一直未投产
3	水处理剂	50t/a	一直未投产
4	精制硫酸铵	58t/a	一直未投产
5	流动改性剂	800t/a	一直未投产
6	TM-181 甲基硫醇 锡塑料稳定剂	250t/a	于 2008 年停产
7	漂白粉	5000t/a	于 2017 年停产

表 3.6-1 企业历史产品实施情况表

(2) 企业主要原辅材料使用情况

序号	原料名称	年消耗量(t)	备注	
1	锡			
2	氯甲烷	由于项目时间较早,未		
3	巯基乙酸异辛酯	找到具体项目环评资	 TM-181 甲基硫醇锡塑/	
4	NaHCO₃	料,故无相关数据	料稳定剂	
5	四甲基氯化铵(催化剂)*		X	
6	煤	120		
7	生石灰	3000		
8	液氯	2512.5(钢瓶装)	漂白粉	
9	烧碱	12.5		

表 3.6-2 企业历史产品主要原辅材料消耗情况

注:《湖州市重兆吴兴化工有限公司生大精细化工厂无机精细化工产品技改项目环境影响报告表》(2002 年)中对原有项目生产工艺简述中未表述催化剂成分,类比同类型企业(邹平县

星字塑料助剂有限公司 600 吨硫醇锑、6400 吨硫醇甲基锡项目现状环境影响评估报告)原辅材料清单,催化剂为四甲基氯化铵。

(3) 实施产品生产工艺流程

① TM-181 甲基硫醇锡塑料稳定剂

TM-181 甲基硫醇锡塑料稳定剂实施时间较早,未找到其具体项目环评,根据《湖州市重兆吴兴化工有限公司生大精细化工厂无机精细化工产品技改项目环境影响报告表》(2002 年)中对原有项目生产工艺简述,TM-181 甲基硫醇锡塑料稳定剂生产工艺具体如下:将金属锡在高温下和在催化剂的作用下,与一氯甲烷发生烷卤化反应,生成二甲基二氯化锡,经冷却稳定后,二甲基二氯化锡再与巯基乙酸异辛酯反应,从而生成甲基硫醇锡,再经分离,精制,即可制得 TM-181 甲基硫醇锡。

② 漂白粉:

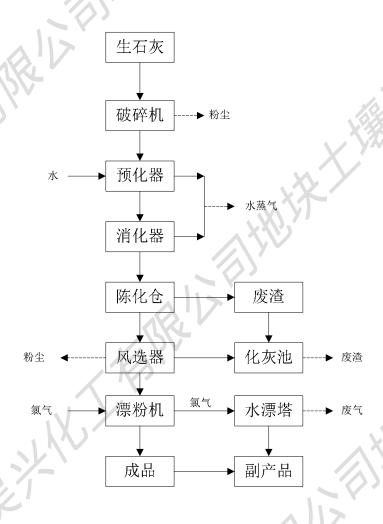


图 3.6-1 漂白粉生产工艺流程图

工艺流程简述:

块状生石灰经破碎机破碎后进入预化器加入温水后再进入消化器,进行消化反应,生成的氢氧化钙进入陈化仓进行陈化,陈化后的氢氧化钙进入风选器进行分选,比重较大的杂质进入化灰池,比重较小的进入飘粉机,飘粉机是由上下四层全密封的桨式搅拌系统组成,由第一节的中部加入 Ca (OH) 2,然后进入第二节、第三节,氯气从第三节中间通入,逐节上升至第二节、第一节与 Ca (OH) 2在飘粉机混合、反应,反应完成后的漂粉经第四节进入包装系统。氯气上升至第一节后,未反应的氯气经密封管道排入尾气处理系统水漂塔,吸收物可作为副产品出售。

(4) 主要污染源分析

①废水影响途径分析

企业营运期间产生的废水主要为生活污水、生产废水,TM-181 甲基硫醇锡塑料稳定剂生产过程中产生的生产废水主要为酯化反应废水和甲基硫醇锡洗涤混合废水、蒸汽冷凝水、间接冷却水,漂白粉生产过程中产生的生产废水主要为车间地面冲洗废水、漂白粉生产喷淋废水。其中酯化反应废水和甲基硫醇锡洗涤混合废水经干燥浓缩后混入煤中进行燃烧;蒸汽冷凝水和间接冷却水排入附近水体;车间地面冲洗废水经预处理后作为消化器生产用水,不排放;漂白粉生产喷淋废水经沉淀后循环使用,不排放;生活污水经化粪池预处理后委托农民清运处置。因此废水排放基本不会对调查地块造成污染影响。

②废气影响途径分析

企业营运期间 TM-181 甲基硫醇锡塑料稳定剂生产过程中产生的废气主要为燃煤废气、反应釜废气,漂白粉生产过程中产生的废气主要为破碎粉尘、风选粉尘、含氯废气,其中燃煤废气通过旋风除尘装置处理后高空排放,反应釜废气通过活性炭吸附装置处理后高空排放;破碎粉尘经布袋除尘装置处理后高空排放;风选粉尘经布袋除尘装置处理后无组织排放;含氯废气经水漂塔(碱液)吸收处理后高空排放。废气主要污染物为氯甲烷、锡、氨、氯化氢、颗粒物、氯、苯并[a]芘、汞、砷、石油烃、SO₂、NO_x,可能会因大气沉降进入土壤对调查地块环境产生影响。

③ 固体废物影响途径分析

企业营运期间产生的固体废物主要为锅炉煤渣、蒸馏残渣、沉淀污泥、氢氧化

钙废渣、废包装材料、生活垃圾。含液碱的废包装材料、蒸馏残渣均属于危险废物。锅炉煤渣堆放于锅炉房内,蒸馏残渣、废包装材料堆放于生产车间内,沉淀污泥、氢氧化钙废渣不在厂区内暂存堆放。主要污染因子为氯甲烷、锡、苯并[a]芘、汞、砷、石油烃,生产过程或储存过程中因遗撒、跑冒滴漏等可能会对调查地块造成污染。

(5) 污染识别

综上分析可知,湖州市重兆吴兴化工有限公司营运期间疑似产生的污染物为氯甲烷、锡、氨、氯化氢、氯、苯并[a]芘、汞、砷、石油烃、SO₂、NO_x。

3.6.3 地块平面布置情况

湖州市重兆吴兴化工有限公司于 2017 年 9 月停产,2022 年 7 月企业法人变更,原企业实际管理人员和技术人员无法取得联系,故未收集到企业内部详细的平面布置情况,结合原企业股东人员访谈和历史卫星影像图分析得到本地块平面分布。根据调查与分析,地块内现状无地下水池、储罐、管线等地下设施,无残余废弃物。地块总平面布置情况见图 3.6-2。

图 3.6-2 地块总平面布置图

3.7 地块内污染源识别

3.7.1 污染区域识别

根据地块历史使用情况及现场踏勘分析,本地块工业生产区域历史上出现过化工厂,生产年限主要集中在 1995 年~2017 年时间段。本次调查根据地块内各区域使用历史、各建筑物建设历史、地面硬化情况、用途、三废、原料情况等分析其对土壤和地下水可能造成的影响程度,以此来确定本地块内疑似污染区域,主要为工业生产企业疑似产生污染物的生产区域,具体见图 3.7-1。

图 3.7-1 地块疑似污染区域识别图

3.7.2 污染因子识别

根据地块使用历史分析,本地块在历史用地过程中使用过的工业生产企业生产 类型以化工生产为主,根据分析本地块原有企业的生产工艺、原辅材料、三废产生 情况等,该地块涉及的潜在特征污染物如表 3.7-1 所示。

企业		特征污染物		
TE MY.	生产工艺主要产污情况		19世纪末初	
湖州市重兆吴兴化工有限公	反应、精制	生活污水、酯化反应废水和 甲基硫醇锡洗涤混合废水、 蒸汽冷凝水、间接冷却水、 燃煤废气、反应釜废气、锅 炉煤渣、蒸馏残渣	氯甲烷、锡、氨、氯化氢、苯并[a]芘、汞、砷、石油烃、SO₂、NO_x	
司	破碎、消化、陈 化、分选、混合 反应	车间地面冲洗废水、漂白粉 生产喷淋废水、破碎粉尘、 风选粉尘、含氯废气、沉淀 污泥、氢氧化钙废渣、废包 装材料	氯	

表 3.7-1 本地块涉及主要特征污染物分析表

3.8 相邻地块污染源调查分析

根据相关人员访谈、查阅历史卫星图片和现场踏勘,本地块周边相邻地块的历史用途主要为农用地、河流、农村宅基地等,周边可能的污染源为相邻的工业企业(湖州卫青纺织有限公司、湖州文华丝绸有限公司)以及湖州宏丽达绸厂历史生产过程中产生的污染物。

根据湖州卫青纺织有限公司现场踏勘,其生产工艺较为简单,主要是织布工艺,包括并丝、倍捻、倒筒、整经、织造,原辅材料主要涉及化纤丝。湖州文华丝绸有限公司、湖州宏丽达绸厂均从事纺织品织造加工,相关基础资料缺失,类比同类型生产企业,主要是织布工艺,包括并丝、倍捻、倒筒、整经、织造,原辅材料主要涉及桑蚕丝。

三家企业在生产经营期间"三废污染物"对土壤和地下水的污染风险较小。因此,湖州卫青纺织有限公司、湖州文华丝绸有限公司(已于 2010 年关停)、湖州宏丽达绸厂(已于 2020 年关停)历史生产过程基本不会对调查地块产生影响。

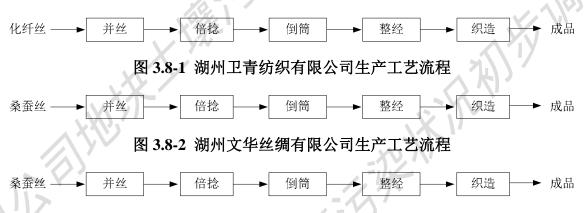


图 3.8-3 湖州宏丽达绸厂生产工艺流程

图 3.8-3 湖州卫青纺织有限公司生产车间现场

3.9 现场踏勘与人员访谈

本次调查于 2023 年 3 月对当地政府管理人员、环保部门管理人员、村委会工作人员以及周边居民等进行了人员访谈,具体人员访谈情况见附件。以当面交流的方式,调查了本次地块以及相邻地块的情况,历史企业起止时间,调查区域及周边涉及的企事业单位生产情况、生产工艺和污染防治措施。本地块除湖州市重兆吴兴化工有限公司外无其它有色金属冶炼、石油加工、化工、电镀、制革等重点工业企业,周边地块历史上未曾建设有色金属冶炼、石油加工、化工、电镀、制革等重点工业

企业,无危废处置填埋场,无地下储罐电线缆等地下设施布设,同时本地块及周边 邻近地块未发生过泄漏事故及其他环境污染事故。

人员访谈信息汇总见表 3.9-1, 具体人员访谈记录表见文本附件 2。

		W 1 / N 1
受访对象	访谈方式	访谈信息汇总
土地使用权人、村委会 管理人员、政府人员、 环保部门、周边居民	当面交流、电 话交流	1、核实了地块内企业历史生产产品种类及规模; 2、核实了地块内企业厂区功能布局; 3、核实地块内企业生产原辅材料及工艺流程; 4、获知地块内企业生产历史,包括企业迁建时间、 关停时间等; 5、获知地块周边土地利用情况; 6、核实了地块内企业"三废"产生及处置情况; 7、核实地块内企业历史生产过程中安全、环保污染 事故发生情况; 8、获知地块内土壤及地下水污染情况以及区域内地 表水及地下水开发利用方式。

表 3.9-1 人员访谈信息汇总表

本次调查对地块现状进行了实地勘察,踏勘以地块内为主,现场踏勘的主要内容:包括地块的现状与历史,相邻地块的现状与历史情况,周围区域的现状与历史情况,区域的地质、水文地质和地形的描述等。

(1) 地表建筑/构筑物

地块内湖州市重兆吴兴化工有限公司内大部分构筑物已拆除,设备均已拆除。

(2) 残余废弃物、废物

地块内无生活垃圾、工业垃圾、工业固废等废物堆放或填埋情况。

(3) 各类地下槽罐、储罐等地下设施

调查未发现地块内存在地下储罐、槽罐等地下建筑或设施,但原地块内存在化 灰池,地下深度约 1.5m。

(4) 管线、沟渠

地块内存在生活污水管线,不涉及有毒有害物质,因此对土壤和地下水污染风 险小。

3.10 第一阶段土壤污染状况调查总结

通过对调查地块的现场踏勘和地块生产历史等相关资料的收集和分析,调查地块主要从事工业生产及农业生产活动。结合本次调查地块、周边相邻地块的资料分析和《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018),本地块潜在的污染区域及重点关注的污染物汇总详见表 3.10-1。

表 3.10-1 地块潜在污染区及污染物分布情况

潜在污染区域	主要污染物	污染途径
工业用地	氯甲烷、锡、氨、氯化氢、苯并[a]芘、 汞、砷、石油烃、SO ₂ 、NO _X	滴漏、下渗、大气沉降
周边相邻污染源	无	无

该地块为疑似污染地块,为了进一步说明地块内存在可能的污染源,本次调查 按照导则规定的土壤污染状况调查工作程序进行第二阶段土壤污染状况调查初步采 样分析。

4 地块初步调查工作方案

4.1 地块调查布点方案

4.1.1 布点原则

调查地块内主要疑似污染区域布点原则如下:

- (1)初步调查目的在于确认地块潜在污染源的位置,并初步调查污染范围,因此结合现场踏勘与前期资料调研结果,采用专业判断的方法在整个地块潜在污染区进行布点。
- (2)此阶段采样点布设根据前期踏勘与资料分析结果,一方面重点关注原工业 地块生产车间污染物存在可能性较大的区域,另一方面确保取样点覆盖整个地块并 能代表整个地块的情况,以便了解整个地块的污染情况。
- (3) 现场环境条件不具备采样条件时,需要对点位进行调整,现场勘查与采样相结合,记录调整原因和调整结果,确定新的采样点位。

4.1.2 土壤布点方案

4.1.2.1 取样点位设计

根据《建设用地土壤环境调查评估技术指南》(环境保护部办公厅 2017 年 12 月 15 日印发),地块面积≤5000m²,土壤采样点位数不少于 3 个; 地块面积>5000m²,土壤采样点位数不少于 6 个,并可根据实际情况酌情增加。 根据《重点行业企业用地调查疑似污染地块布点技术规定(试行)》,原则上每个疑似污染地块应筛选不少于 2 个布点区域。

本次调查地块总用地面积约为 6500 平方米,按照《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)的要求,采用分区布点法结合现有建筑物情况布设采样点位。根据《重点行业企业用地调查疑似污染地块布点技术规定(试行)》,在可能存在污染区域、事故泄漏点、事故发生地点、地面裂缝、桩柱基础边缝、生产装置腐蚀痕迹处、有毒有害物质装卸点、运输过程中可能发生跑冒滴漏的位置、排水管线出口四周、堆放区洼地、地面未硬化区域、堆放区硬化地面裂缝位置、土壤颜色异常点、其他异常情况(植被生长异常等)、现场快速检测辅助判断异常点进行综合调查判断,进行点位布设。

在根据地块内企业分布、重点区域分布、疑似污染区域识别等基础上,同时考虑到常年主导风向、地下水流向等因素,将地块内锅炉房、生产区、原料仓库、化 灰池作为重点区域,点位布设在最接近疑似污染源的位置。

因此,本次调查实际共在地块内布设 6 个土壤柱状样采样点(S1~S6),点位布设依据见表 4.1-1,具体采样点位布置见图 4.1-2,相关点位说明见表 4.1-3。现场每个采样点的位置均使用 RTK 仪器记录采样点位详细坐标。土壤监测 1 天,采样 1 次。

		A.0XZI -
点位编号	点位位置	布设依据
	X.	该点位于企业锅炉房内,产生的废气可能通过大
S1	锅炉房	气沉降导致土壤污染,煤堆放会对土壤、地下水
	~ /////	造成污染。
		该点位于主要生产车间内, 该区域主要布设反应
S2	生产区西侧区域	釜等设备,该车间生产过程中产生的有机废气,
	10.17	可能通过大气沉降导致土壤污染。
G2	原料仓库	该点位于原料仓库内,原料暂存过程中"三防"
S3	深科包 件	措施较差导致危废泄漏对土壤、地下水造成污染。
		该点位于主要生产车间东南侧,该区域主要布设
S4	生产区东南侧区域	水漂塔等废气处理设施,该车间生产过程中产生
		的氯气,可能通过大气沉降导致土壤污染。
Q.F.	戊日人庄	该点位于成品仓库内,成品暂存过程中"三防"
S5	成品仓库	措施较差导致危废泄漏对土壤、地下水造成污染。
		该点位于漂白粉生产过程的化灰池,废渣暂存过
S6	化灰池	程中"三防"措施较差导致泄漏对土壤、地下水
	- 38	造成污染。

表 4.1-1 本地块点位布设及依据

4.1.2.2 采样深度

(1) 采样深度设定

根据收集到的邻近地块地勘资料,本区域浅层土层结构以素填土、粉质粘土、 粘土为主,其中粉质粘土和粘土层厚度在 12m 左右,粘土层的渗透系数很低,基本 可视为相对隔水层,能有效防止污染物向下层运移扩散,结合南浔地区其他地块的 土壤污染调查情况,本次调查采样深度设置为 6m,实际根据现场情况进行调整,调整原则为钻至相对隔水层,但不穿透,若在底层发现污染痕迹,需适当加深。

(2) 取样层位设定

根据《建设用地土壤污染风险管控和修复监测技术导则》(H125.2-2019)要求,原则应采集 0~0.5m 表层土壤样品, 0.5m 以下下层土壤样品根据判断布点法采集,建议 0.5~6m 土壤采样间隔不超过 2m。"为进一步了解地块内土壤状况,本项目以 3m 以内深层土壤的采样间隔 0.5m, 3~6m 采样间隔为 1m 设置采样点。

土壤采集 0-0.5m、0.5-1.0m、1.0-1.5m、1.5m-2.0m、2.0m-2.5m、2.5m-3.0m、3.0m-4.0m、4.0m-5.0m、6.0m-6.0m的样品,共计 9 个样。其中 0~0.5m(表层样品)、1.0~1.5m(地下水位线土层样品、变层位置,根据实际地下水位埋深和快筛结果确定送检)、底层样品均需送检,其余样品进行 XRF 及 PID 现场快速检测,若其他层出现快筛结果异常,需增加该层样品送检,即每个孔位送检 3~4 个样品。另外,采集不少于土壤样品数量 10%的平行样作为质量控制样品。

4.1.2.3 检测因子

根据上文分析,地块关注污染物为氯甲烷、锡、氨、氯化氢、苯并[a]芘、汞、砷、石油烃、 SO_2 、 NO_X 、氯,具体检测因子选取选取依据见表 4.1-2。

序号	特征污染物	是否检测	选取说明
1	氯甲烷	是	
2	苯并[a]芘	是	属于 GB36600 中的 45 项基本检测项目
3	汞	是	属 J UD30000 中的 43 坝蚕华位侧坝日
4	砷	是	
5	石油烃(C10~C40)	是	属于 GB36600 中的其他检测项目
6	氯	是	有毒气体污染物,在土壤中以离子形式存 在,调整为检测氯离子
7	锡	是	重金属污染物
8	氨	否	调整为检测 pH
9	氯化氢	否	调整为检测 pH
10	NO _X	否	调整为检测 pH

表 4.1-2 检测因子选取一览表

11 SO ₂ 否 调整为检	测 pH
---------------------------	------

综上分析,依据本地块不同历史时期和不同区块的各生产活动可能造成的影响,综合考虑实验室分析检测能力。确定本地块土壤调查检测因子为: pH、45 项基本因子、石油烃(C_{10} ~ C_{40})、氯离子、锡。

4.1.3 地下水布点方案

4.1.3.1 地下水流向

根据《横港村农民集聚房岩土工程勘察报告》中的地下水位数据,判断区域地下水流向大致从西南往东北方向。

序	编	坐标(2000 国	家大地坐标系)		引添 ()	地门	下水
号	号	X	Y	高程(m)	孔深 (m)	深度 (m)	高程(m)
1	J11	3402115.16	523354.59	1. 52	35. 00	-0. 10	1.62
2	J12	3402123.60	523375.31	1. 55	35. 00	-0. 10	1.65
3	J2	3402132.30	523320.14	1. 49	35. 00	-0. 10	1.59
4	J3	3402141.90	523343.69	1. 52	35. 00	-0.10	1.62
5	J5	3402109.71	523302.96	1. 56	35. 00	-0.10	1.66
6	J6	3402118.88	523325.46	1. 55	35. 00	-0. 10	1.65
7	Ј8	3402136.98	523369.86	1. 48	35. 00	-0. 10	1.58
8	Ј9	3402096.33	523308.41	1. 58	35. 00	-0. 10	1.68
9	Z 1	3402123.08	523297.51	1. 54	35. 00	-0. 10	1.64
10	Z10	3402105.56	523331.04	1. 62	35. 00	0. 00	1.62
11	Z 4	3402150.35	523364.41	1. 50	35. 00	-0. 10	1.60
12	Z 7	3402128.53	523349.14	1.52	35. 00	-0. 10	1.62

表 4.1-2 勘探点地下水位数据

图 4.1-1 区域地下水流向图

4.1.3.2 取样点位设计

根据《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)中地下水监测点位布设要求:对于地下水流向及地下水位,可结合环境调查结论间隔一定距离按三角形或四边形至少布置 3~4 个点位监测判断。地下水监测点位应沿地下水流向布设,可在地下水流向上游、地下水可能污染较严重区域和地下水流向下游分别布设监测点位。

本次调查实际共在地块内布设 3 个地下水监测井,分别对应土壤点位 S1、S2、S3。具体采样点位如图 4.1-2 所示,相关点位说明见表 4.1-3。地下水监测 1 天,每天 1 次。

4.1.3.3 采样深度

(1) 采样深度设定

根据收集到的邻近地块地勘资料,本区域孔隙潜水静止水位埋深在-0.10~0.00m之间,孔隙承压水静止水位埋深在 1.50~1.80m 之间。因此,本次调查地下水点位建井深度 6m,采样深度为地下水面下 50cm,实际钻探深度根据实际情况进行调整。另外,采集不少于地下水样品数量 10%的平行样作为质量控制样品。

注意地下水采样深度,采样井深度应达到潜水层底板,但不应穿透潜水层底板; 当潜水层厚度大于 3 米时,采样井深度应至少达到地下水水位以下 3 米。

对可能含有低密度或高密度非水溶性有机污染物的地下水,应对应的采集上部或下部水样。

4.1.3.4 检测因子

根据本地块不同历史时期和不同区块的各生产活动可能造成的影响,综合考虑实验室分析检测能力,同时参考《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中 45 项基本因子。确定本地块地下水调查检测因子为: 45 项基本因子、37 项常规指标、石油烃(C_{10} ~ C_{40})、锡。

4.1.4 对照点布点方案

依据《建设用地土壤污染状况调查技术导则》(HJ 25.1-2019)和《建设用地土壤污染风险管控和修复监测技术导则》(HJ 25.2-2019)相关要求,在本地块周边范围一定时间内未受外界扰动的裸露土壤,且水文地质情况与地块内相似的区域设置 1个土壤对照点,在地下水流向上游的一定距离设置对照监测井。本次调查在地块西南侧表层土壤未被扰动区域约 20m 处设置一个土壤对照点位(S7),采集柱状样品,采样深度和采样间隔与地块内点位基本保持一致,同时该点位设立 1 个清洁对照的地下水监测井(DW4)。对照点位置见图 4.1-3。

4.1.5 采样信息汇总

本地块土壤、地下水采样点位布置见图 4.1-2, 采样点位信息汇总见表 4.1-3。

图 4.1-2 调查地块土壤、地下水采样点位设置图 (此图为 2019 年 8 月的历史影像图)

表 4.1-3 土壤、地下水采样及检测一览表

点位编号	经度 (°E)	纬度 (°N)	样品数 (个)	检测深度(m)	检测指标
S1	120° 14'38.89"	30° 44'5.70"	4		
S2	120° 14'39.61"	30° 44'5.10"	4	- N. W.	
S3	120° 14'38.98"	30° 44'4.43"	4	采样深度 6.0m, 0-0.5m、0.5-2.5m、	pH,45 项,石
S4	120° 14'40.33"	30° 44'4.57"	4	2.5m-4.0m、 4.0-6.0m 各取 1 个	ph, 43 项, 石 油烃(C ₁₀ ~C ₄₀), 氯离子,锡
S5	120° 14'38.22"	30° 44'4.12"	4	样 	*(IA) 1 , W
S6	120° 14'39.73"	30° 44'6.15"	4		
S7 (对照)	120° 14'37.82"	30° 44'2.74"	4		
DW1 (S1)	120° 14'38.89"	3 30° 44'5.70"	1		1/2
DW2 (S2)	120° 14'39.61"	30° 44'5.10"	1	建井 6.0m 监测井水面下 0.5	45 项基本因子、 37 项常规指标、
DW3 (S3)	120° 14'38.98"	30° 44'4.43"	1	米采一个水样	石油烃 (C ₁₀ ~C ₄₀)、锡
DW4 对照 (S7)	120° 14'37.82"	30° 44'2.74"	1		

4.2 分析检测方案

4.2.1 检测项目

地块内土壤、地下水具体检测项目如下。

表 4.2-1 地块土壤、地下水检测项目一览表

样品	检测指标
土壤	重金属和无机物(7 项):镉、汞、砷、铅、铜、镍、六价铬;挥发性有机物(27 项):四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1 二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯;半挥发性有机物(11 项):硝基苯、苯胺、2-氯酚、苯并[a]蒽、苯并[a]芘、苯并[b] 荧蒽、苯并[k]荧蒽、 菌、二苯并[a,h]蒽、茚并[1,2,3-cd]芘、萘;增测项目(4 项):pH、石油烃(C_{10} ~ C_{40})、氯离子、锡。
地下水	地下水常规指标(37项): pH、色度、臭和味、浑浊度、肉眼可见物、总硬度、溶解性总固体、硫酸盐、氯化物、铁、锰、铜、锌、钼、挥发性酚类、阴离子表面活性剂、耗氧量、氨氮、硫化物、钠、总大肠菌群、菌落总数、亚硝酸盐、硝酸盐、氰化

物、氟化物、碘化物、汞、砷、硒、镉、铬(六价)、铅、三氯甲烷、四氯化碳、苯、 甲苯:

重金属指标(1项):镍;

挥发性有机物(23 项): 氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1 二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,2-四氯乙烷、1,1,2,2四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、间二甲苯+对二甲苯、邻二甲苯;

半挥发性有机物(11 项): 硝基苯、苯胺、2-氯酚、苯并[a]蒽、苯并[a]芘、苯并[b]荧蒽、苯并[k]荧蒽、 菌、二苯并[a,h]蒽、茚并[1,2,3-cd]芘、萘;增测项目(2 项): 石油烃(C_{10} ~ C_{40})、锡。

4.2.2 检测方法

样品测试方法优先采用《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)、《地下水质量标准》等推荐的分析方法,或者选用检测实验室资质认定范围内的国际标准、区域标准、国家标准及行业标准方法,所采用方法均通过 CMA 认可。各因子的检测方法具体见下表。

序 检测参数 检测方法 主要检测设备 检出限 单位 묵 氯甲烷 1 气相色谱-质谱联用仪 1.0 HJ 605-2011 μg/kg 2 氯乙烯 HJ 605-2011 气相色谱-质谱联用仪 1.0 μg/kg 3 1,1-二氯乙烯 HJ 605-2011 气相色谱-质谱联用仪 1.0 μg/kg 4 二氯甲烷 HJ 605-2011 气相色谱-质谱联用仪 1.5 μg/kg 反式-1,2-二氯乙烯 气相色谱-质谱联用仪 5 HJ 605-2011 1.4 μg/kg 1,1-二氯乙烷 HJ 605-2011 气相色谱-质谱联用仪 6 1.2 μg/kg 7 顺式-1,2-二氯乙烯 HJ 605-2011 气相色谱-质谱联用仪 1.3 μg/kg 气相色谱-质谱联用仪 8 氯仿 HJ 605-2011 1.1 μg/kg 9 1,1,1-三氯乙烷 HJ 605-2011 气相色谱-质谱联用仪 1.3 μg/kg 10 四氯化碳 HJ 605-2011 气相色谱-质谱联用仪 1.3 μg/kg 苯 11 HJ 605-2011 气相色谱-质谱联用仪 1.9 μg/kg 1,2-二氯乙烷 HJ 605-2011 气相色谱-质谱联用仪 12 1.3 μg/kg 三氯乙烯 气相色谱-质谱联用仪 1.2 13 HJ 605-2011 μg/kg 14 1,2-二氯丙烷 HJ 605-2011 气相色谱-质谱联用仪 1.1 μg/kg 甲苯 15 HJ 605-2011 气相色谱-质谱联用仪 1.3 μg/kg 1,1,2-三氯乙烷 16 HJ 605-2011 气相色谱-质谱联用仪 1.2 μg/kg

表 4.2-2 土壤分析方法、使用仪器、检出限一览表

		70, 1			
序 号	检测参数	检测方法	主要检测设备	检出限	单位
17	四氯乙烯	НЈ 605-2011	气相色谱-质谱联用仪	1.4	μg/kg
18	氯苯	НЈ 605-2011	气相色谱-质谱联用仪	1.2	μg/kg
19	1,1,1,2-四氯乙烷	НЈ 605-2011	气相色谱-质谱联用仪	1.2	μg/kg
20	乙苯	НЈ 605-2011	气相色谱-质谱联用仪	1.2	μg/kg
21	间,对-二甲苯	НЈ 605-2011	气相色谱-质谱联用仪	1.2	μg/kg
22	邻-二甲苯	НЈ 605-2011	气相色谱-质谱联用仪	1.2	μg/kg
23	苯乙烯	НЈ 605-2011	气相色谱-质谱联用仪	1.1	μg/kg
24	1,1,2,2-四氯乙烷	НЈ 605-2011	气相色谱-质谱联用仪	1.2	μg/kg
25	1,2,3-三氯丙烷	НЈ 605-2011	气相色谱-质谱联用仪	1.2	μg/kg
26	1,4-二氯苯	НЈ 605-2011	气相色谱-质谱联用仪	1.5	μg/kg
27	1,2-二氯苯	НЈ 605-2011	气相色谱-质谱联用仪	1.5	μg/kg
28	pH 值(土壤)	НЈ 962-2018	pH 计	-	无量纲
29	砷	GB/T 22105.2-2008	原子荧光光度计	0.01	mg/kg
30	镉	GB/T 17141-1997	石墨炉原子吸收分光光谱 仪	0.01	mg/kg
31	六价铬	НЈ 1082-2019	原子吸收分光光度计	0.5	mg/kg
32	铜	НЈ 491-2019	原子吸收分光光度计	1	mg/kg
33	铅	GB/T 17141-1997	石墨炉原子吸收分光光谱 仪	0.1	mg/kg
34	汞	GB/T 22105.1-2008	原子荧光光度计	0.002	mg/kg
35	镍	НЈ 491-2019	原子吸收分光光度计	3	mg/kg
36	石油烃(C10- C40)	НЈ 1021-2019	气相色谱仪	6	mg/kg
37	苯胺	GB 5085.3-2007 附录 K	气相色谱-质谱联用仪	0.03	mg/kg
38	2-氯苯酚	НЈ 834-2017	气相色谱-质谱联用仪	0.06	mg/kg
39	硝基苯	НЈ 834-2017	气相色谱-质谱联用仪	0.09	mg/kg
40	萘	НЈ 834-2017	气相色谱-质谱联用仪	0.09	mg/kg
41	苯并(a)蒽	НЈ 834-2017	气相色谱-质谱联用仪	0.1	mg/kg
42	崫	НЈ 834-2017	气相色谱-质谱联用仪	0.1	mg/kg
43	苯并(b) 荧蒽	НЈ 834-2017	气相色谱-质谱联用仪	0.2	mg/kg
44	苯并(k) 荧蒽	НЈ 834-2017	气相色谱-质谱联用仪	0.1	mg/kg
45	苯并(a) 芘	НЈ 834-2017	气相色谱-质谱联用仪	0.1	mg/kg
46	茚并(1,2,3-cd)芘	НЈ 834-2017	气相色谱-质谱联用仪	0.1	mg/kg

序 号	检测参数	检测方法	主要检测设备	检出限	单位
47	二苯并(a,h)蒽	НЈ 834-2017	气相色谱-质谱联用仪	0.1	mg/kg
48	氯离子	NY/T 1121.17-2006	酸式滴定管(15293)	0.08	mmol/kg
49	锡	ISO 22036-2008	等离子体原子发射光谱仪	1.6	mg/kg

表 4.2-3 地下水分析方法、使用仪器、检出限一览表

日 一切	序号	检测参数	检测方法	主要检测设备	检出限	单位
3 1,1-二氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 2	1	氯甲烷		气相色谱-质谱联用仪	0.13	μg/L
4 二氯甲烷 HJ 639-2012 气相色谱-质谱联用仪 1.0 μg/L 5 反式-1,2-二氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 6 1,1-二氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 7 顺式-1,2-二氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 8 氯仿 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 9 1,1,1-三氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 10 四氯化碳 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 11 苯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 12 1,2-二氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 13 三氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 14 1,2-二氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 15 甲苯 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 16 1,1,2-三氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 17 四氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L 17 四氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L 18 氯苯 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 19 1,1,1,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.0 μg/L 19 1,1,1,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.0 μg/L 20 乙苯 HJ 639-2012 气相色谱-质谱联用仪 0.8 μg/L 21 间, 对-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 2.2 μg/L 22 邻-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 23 苯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 23 苯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 23 苯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 24 1,1,2,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 25 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 25 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 25 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L	2	氯乙烯	НЈ 639-2012	气相色谱-质谱联用仪	1.5	μg/L
5 反式-1,2-二氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 6 1,1-二氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 7 顺式-1,2-二氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 8 氯仿 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 9 1,1,1-三氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 10 四氯化碳 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 11 苯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 12 1,2-二氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 13 三氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 14 1,2-二氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 15 甲苯 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L 16 1,1,2-三氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 17 四氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.0 μg/L 19 1,1,1,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L	3	1,1-二氯乙烯	НЈ 639-2012	气相色谱-质谱联用仪	1.2	μg/L
 6 1,1-二氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L	4	二氯甲烷	НЈ 639-2012	气相色谱-质谱联用仪	1.0	μg/L
7 顺式-1,2-二氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 8 氯仿 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 9 1,1,1-三氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 10 四氯化碳 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L 11 苯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 12 1,2-二氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 13 三氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 14 1,2-二氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 15 甲苯 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 16 1,1,2-三氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 17 四氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L 18 氯苯 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L 19 1,1,1,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.0 μg/L 19 1,1,1,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L 20 乙苯 HJ 639-2012 气相色谱-质谱联用仪 0.8 μg/L 21 向,对-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 0.8 μg/L 22 邻-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 23 苯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 23 苯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 24 1,1,2,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 0.6 μg/L 24 1,1,2,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 25 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L	5	反式-1,2-二氯乙烯	НЈ 639-2012	气相色谱-质谱联用仪	1.1	μg/L
8	6	1,1-二氯乙烷	НЈ 639-2012	气相色谱-质谱联用仪	1.2	μg/L
9 1,1,1-三氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 10 四氯化碳 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L 11 苯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 12 1,2-二氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 13 三氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 14 1,2-二氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 15 甲苯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 16 1,1,2-三氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L 17 四氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L 18 氯苯 HJ 639-2012 气相色谱-质谱联用仪 1.0 μg/L 19 1,1,1,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.0 μg/L 19 1,1,1,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L 20 乙苯 HJ 639-2012 气相色谱-质谱联用仪 0.8 μg/L 21 间,对-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 0.8 μg/L 22 邻-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 0.6 μg/L 23 苯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 23 苯乙烯 HJ 639-2012 气相色谱-质谱联用仪 0.6 μg/L 24 1,1,2,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 25 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L	7	顺式-1,2-二氯乙烯	НЈ 639-2012	气相色谱-质谱联用仪	1.2	μg/L
10 四氯化碳	8	氯仿	НЈ 639-2012	气相色谱-质谱联用仪	1.4	μg/L
11 末	9	1,1,1-三氯乙烷	НЈ 639-2012	气相色谱-质谱联用仪	1.4	μg/L
12	10	四氯化碳	НЈ 639-2012	气相色谱-质谱联用仪	1.5	μg/L
13 三氯乙烯	11	苯	НЈ 639-2012	气相色谱-质谱联用仪	1.4	μg/L
14 1,2-二氯丙烷	12	1,2-二氯乙烷	НЈ 639-2012	气相色谱-质谱联用仪	1.4	μg/L
15 甲苯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 16 1,1,2-三氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L 17 四氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 18 氯苯 HJ 639-2012 气相色谱-质谱联用仪 1.0 μg/L 19 1,1,1,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 0.8 μg/L 20 乙苯 HJ 639-2012 气相色谱-质谱联用仪 0.8 μg/L 21 间,对-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 22 邻-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 0.6 μg/L 23 苯乙烯 HJ 639-2012 气相色谱-质谱联用仪 0.6 μg/L 24 1,1,2,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 25 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L	13	三氯乙烯	НЈ 639-2012	气相色谱-质谱联用仪	1.2	μg/L
16	14	1,2-二氯丙烷	НЈ 639-2012	气相色谱-质谱联用仪	1.2	μg/L
17 四氯乙烯 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 18 氯苯 HJ 639-2012 气相色谱-质谱联用仪 1.0 μg/L 19 1,1,1,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L 20 乙苯 HJ 639-2012 气相色谱-质谱联用仪 0.8 μg/L 21 间,对-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 2.2 μg/L 22 邻-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 23 苯乙烯 HJ 639-2012 气相色谱-质谱联用仪 0.6 μg/L 24 1,1,2,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 25 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L	15	甲苯	НЈ 639-2012	气相色谱-质谱联用仪	1.4	μg/L
18 3末 HJ 639-2012 气相色谱-质谱联用仪 1.0 μg/L 19 1,1,1,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L 20 乙苯 HJ 639-2012 气相色谱-质谱联用仪 0.8 μg/L 21 间,对-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 2.2 μg/L 22 邻-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 23 苯乙烯 HJ 639-2012 气相色谱-质谱联用仪 0.6 μg/L 24 1,1,2,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 25 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 26 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 26 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 27 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 28 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 29 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L 20 21 22 23 24 24 24 24 24 24	16	1,1,2-三氯乙烷	НЈ 639-2012	气相色谱-质谱联用仪	1.5	μg/L
19 1,1,1,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.5 μg/L 20 乙苯 HJ 639-2012 气相色谱-质谱联用仪 0.8 μg/L 21 间,对-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 2.2 μg/L 22 邻-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 23 苯乙烯 HJ 639-2012 气相色谱-质谱联用仪 0.6 μg/L 24 1,1,2,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 25 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L	17	四氯乙烯	НЈ 639-2012	气相色谱-质谱联用仪	1.2	μg/L
20 乙苯 HJ 639-2012 气相色谱-质谱联用仪 0.8 μg/L 21 间,对-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 2.2 μg/L 22 邻-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 23 苯乙烯 HJ 639-2012 气相色谱-质谱联用仪 0.6 μg/L 24 1,1,2,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 25 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L	18	氯苯	НЈ 639-2012	气相色谱-质谱联用仪	1.0	μg/L
21 间,对-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 2.2 μg/L 22 邻-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 23 苯乙烯 HJ 639-2012 气相色谱-质谱联用仪 0.6 μg/L 24 1,1,2,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 25 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L	19	1,1,1,2-四氯乙烷	НЈ 639-2012	气相色谱-质谱联用仪	1.5	μg/L
22 邻-二甲苯 HJ 639-2012 气相色谱-质谱联用仪 1.4 μg/L 23 苯乙烯 HJ 639-2012 气相色谱-质谱联用仪 0.6 μg/L 24 1,1,2,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 25 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L	20	乙苯	НЈ 639-2012	气相色谱-质谱联用仪	0.8	μg/L
23 苯乙烯 HJ 639-2012 气相色谱-质谱联用仪 0.6 μg/L 24 1,1,2,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 25 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L	21	间,对-二甲苯	НЈ 639-2012	气相色谱-质谱联用仪	2.2	μg/L
24 1,1,2,2-四氯乙烷 HJ 639-2012 气相色谱-质谱联用仪 1.1 μg/L 25 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L	22	邻-二甲苯	НЈ 639-2012	气相色谱-质谱联用仪	1.4	μg/L
25 1,2,3-三氯丙烷 HJ 639-2012 气相色谱-质谱联用仪 1.2 μg/L	23	苯乙烯	НЈ 639-2012	气相色谱-质谱联用仪	0.6	μg/L
	24	1,1,2,2-四氯乙烷	НЈ 639-2012	气相色谱-质谱联用仪	1.1	μg/L
26 1,4-二氯苯 HJ 639-2012 气相色谱-质谱联用仪 0.8 μg/L	25	1,2,3-三氯丙烷	НЈ 639-2012	气相色谱-质谱联用仪	1.2	μg/L
	26	1,4-二氯苯	НЈ 639-2012	气相色谱-质谱联用仪	0.8	μg/L

		7().			
序号	检测参数	检测方法	主要检测设备	检出限	单位
27	1,2-二氯苯	НЈ 639-2012	气相色谱-质谱联用仪	0.8	μg/L
28	萘	НЈ 478-2009	液相色谱仪	0.011	μg/L
29	苯并 (a) 蒽	НЈ 478-2009	液相色谱仪	0.20	μg/L
30	趙	НЈ 478-2009	液相色谱仪	0.082	μg/L
31	苯并 (b) 荧蒽	НЈ 478-2009	液相色谱仪	0.30	μg/L
32	苯并(k)荧蒽	НЈ 478-2009	液相色谱仪	0.54	μg/L
33	苯并 (a) 芘	НЈ 478-2009	液相色谱仪	0.032	μg/L
34	茚并 (1,2,3-c,d) 芘	НЈ 478-2009	液相色谱仪	0.057	μg/L
35	二苯并(ah)蒽	НЈ 478-2009	液相色谱仪	0.01	μg/L
36	2-氯酚	НЈ 676-2013	气相色谱仪	1.1	μg/L
37	苯胺	НЈ 822-2017	气相色谱-质谱联用仪	0.03	mg/L
38	硝基苯	НЈ 716-2014	气相色谱-质谱联用仪	0.04	μg/L
39	pH 值	HJ 1147-2020	便携式 pH 计 SX711	-	无量纲
40	色度	GB/T 5750.4-2006	50mL 比色管	5	度
41	臭和味	GB/T 5750.4-2006	250mL 锥形瓶	-	FIX
42	浑浊度	НЈ 1075-2019	浊度计 WGZ-3B	0.3	NTU
43	肉眼可见物	GB/T 5750.4-2006	250mL 锥形瓶	(1984)	-
44	总硬度	GB/T 7477-1987	滴定管	1.0	mg/L
45	溶解性总固体	GB/T 5750.4-2006(8.1)	电子天平	4	mg/L
46	硫酸盐	НЈ/Т 342-2007	可见分光光度计	5	μg/L
47	耗氧量	GB/T5750.7-2006	滴定管	0.05	mg/L
48	氨氮	GB/T5750.5-2006	可见分光光度计	0.025	mg/L
49	硫化物	НЈ 1226-2021	可见分光光度计	0.003	mg/L
50	硝酸盐氮	НЈ/Т 346-2007	紫外可见分光光度计	0.08	mg/L
51	亚硝酸盐氮	GB/T 7493-1987	可见分光光度计	0.003	mg/L
52	氰化物	НЈ 484-2009	可见分光光度计	0.004	mg/L
53	氟化物	GB/T 7484-1987	离子计	0.05	mg/L
54	挥发酚	НЈ 503-2009	紫外可见分光光度计	0.0003	mg/L
55	阴离子表面活性剂	GB/T 7494-1987	可见分光光度计	0.05	mg/L
56	六价铬	GB/T 7467-1987	可见分光光度计	0.004	μg/L
57	碘化物	GB/T 5750.5-2006(11.2)	可见分光光度计	0.02	mg/L
58	总大肠菌群	《水和废水监测分析	生化培养箱	2	MPN/100mL
	A 71				

		7.0.			
序号	检测参数	检测方法	主要检测设备	检出限	单位
	. 10	方法》(第四版增补版)国家环境保护总局(2006年)		74)	1)
59	菌落总数	НЈ 1000-2018	生化培养箱	1	cfu/mL
60	氯化物	НЈ 84-2016	离子色谱仪	0.007	mg/L
61	砷	НЈ 700-2014	电感耦合等离子体质谱仪	1.2×10 ⁻⁴	mg/L
62	镉	НЈ 700-2014	电感耦合等离子体质谱仪	5×10 ⁻⁵	mg/L
63	铅	НЈ 700-2014	电感耦合等离子体质谱仪	9×10 ⁻⁵	mg/L
64	硒	НЈ 700-2014	电感耦合等离子体质谱仪	4.1×10 ⁻⁴	mg/L
65	锡	НЈ 700-2014	电感耦合等离子体质谱仪	8×10 ⁻⁵	mg/L
66	汞	НЈ 694-2014	原子荧光光度计	4×10 ⁻⁵	mg/L
67	镍	НЈ 776-2015	电感耦合等离子原子发射 光谱仪	0.007	mg/L
68	铝	НЈ 776-2015	电感耦合等离子原子发射 光谱仪	0.009	mg/L
69	铜	НЈ 776-2015	电感耦合等离子原子发射 光谱仪	0.04	mg/L
70	铁	НЈ 776-2015	电感耦合等离子原子发射 光谱仪	0.01	mg/L
71	锰	НЈ 776-2015	电感耦合等离子原子发射 光谱仪	0.01	mg/L
72	锌	НЈ 776-2015	电感耦合等离子原子发射 光谱仪	0.009	mg/L
73	钠	НЈ 776-2015	电感耦合等离子原子发射 光谱仪	0.03	mg/L
74	石油烃(C10-C40)	НЈ 894-2017	气相色谱仪	0.01	mg/L
75	锡	НЈ 776-2015	电感耦合等离子体发射光 谱仪	0.04	mg/L

4.3 方案函审及修改情况说明

我单位根据前期调查及访谈等基本信息,编制了湖州市重兆吴兴化工有限公司 地块土壤污染状况初步调查布点方案,并邀请三位专家进行函审,根据函审意见对 布点方案进行了完善,具体布点方案函审意见及修改情况见文本附件 6。

5 现场采样和实验室分析

5.1 现场准备

由项目负责人组建工作组开展土壤和地下水的采样调查工作,采样负责人根据工作任务确定工作组成员,具体工作如下:

- (1) 召开工作组调查启动会,按照布点采样方案,明确工作组内人员任务分工和质量考核要求。
 - (2) 制定并确认采样计划,提出现场钻探采样协助配合的具体要求。
- (3)组织进场前安全培训,内容包括钻探和采样设备的使用安全、现场采样的健康安全防护、以及事故应急措施等。
- (4)按照布点采样方案,开展现场踏勘。根据企业生产设施分布实际情况以及 便携式仪器快速检测结果对点位适当调整,采用钉桩、喷漆等方式设置钻探点标记 和编号。
- (5) 采样工具根据土壤样品检测项目进行选择。非扰动采样器用于检测 VOCs 土壤样品采集,不锈钢铲或表面镀特氟龙膜的采样铲可用于检测非挥发性和半挥发性有机物土壤样品采集,塑料铲或竹铲可用于检测重金属土壤样品采集。
- (6)根据地下水样品采集需要,选择并准备合适的洗井和采样设备,检查洗井和采样设备运行情况,确定设备材质不会对样品检测产生影响。本项目采用一次性贝勒管采集地下水样品。
- (7)根据土壤采样现场监测需要,检查 pH 计、PID、XRF 和 RTK 等现场快速 检测设备和手持智能终端等设备运行状况,使用前进行校准。
- (8)根据样品保存需要,准备冰柜、样品箱、样品瓶和蓝冰等样品保存工具, 检查设备保温效果、样品瓶种类和数量、保护剂添加等情况。
 - (9) 准备安全防护口罩、一次性防护手套、安全帽等人员防护用品。
- (10)准备采样记录单、影像记录设备、防雨器具、现场通讯工具等采样辅助物品。

表 5.1-1 样品采集拟使用的设备及材料一览表

	5.1-1 杆品米集拟使用的设备及材料一览农		
工序	设备名称	数量	规格
1. 71 41-193	QY-100L 专用土壤取样及钻井设备	1	台
土孔钻探	RTK	1	台
	竹铲	若干	个
	非扰动器	若干	个
样品采集	不锈钢铲	若干	个
	采样瓶	若干	组
V	采样袋	若干	组
	保温箱	1	个
样品保存	蓝冰	若干	块
	稳定剂	若干	组
样品运输	5 座小型轿车	1	辆
	贝勒管	5	根
地下水样品采集	抽滤装置	1	台
	采样瓶	若干	组
	X 射线荧光光谱仪(XRF)	-1)	台
/ 14/	光离子气体检测器(PID)	2 1	台
//	pH 计	1	台
现场快速检测	氧化还原电位仪	1	台
为心为人及心里恢	电导率仪	1	台
	浊度计	1	台
	溶解氧仪	1	台
	水位测试仪	1	台
	手持秤	1	台
	防护手套	若干	双
	防护口罩	若干	只
其他	安全帽	若干	顶
(防护、记录等)	急救医药包	\\1\	只
	签字笔	若干	支
12.7	白板笔	1	支
1/1/2	卷尺	1	卷
	/\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

5.2 土壤钻探

5.2.1 土壤钻探设备

结合地块所在地区的地层条件、钻探的作业条件,本次土壤钻探采用 QY-100L 专用土壤取样及钻井设备,通过连续密闭直推式的方式采集场地内的土柱,钻探设备见图 5.2-1。

图 5.2-1 QY-100L 专用土壤取样及钻井设备

5.2.2 土壤钻探过程

在开展土孔钻探前,需根据信息采集结果并在相关负责人的带领下,探查已拟定采样点地下是否有地下燃气管线、地下电线电缆、地下自来水管线、地下污水管网等情况,若存在上述情况,需要对采样点进行针对性调整;若地下情况不明,可在现场选用手工钻探或物探设备探明地下情况。

土孔钻探按照钻机架设、开孔、钻进、取样、封孔、点位复测的流程进行,具体如下:

(1)钻机架设:根据钻探设备实际需要清理钻探作业面,架设钻机,设立警示牌或警戒线。

- (2) 开孔: 开孔直径大于正常钻探的钻头直径, 开孔深度超过钻具长度。
- (3)钻进:选择无浆液钻进,全程套管跟进,防止钻孔坍塌和上下层交叉污染;钻进过程中揭露地下水时,停钻等水,待水位稳定后,测量并记录初见水位。每次钻进深度为50cm~150cm,岩芯平均采取率一般不小于70%,其中粘性土及完整基岩的岩芯采取率不小于85%,砂土类地层的岩芯采取率不小于65%,碎石土类地层岩芯采取率不小于50%,强风化、破碎基岩的岩芯采取率不小于40%。土壤岩芯样品按照揭露顺序依次放入岩芯箱,对土层变层位置进行标识。

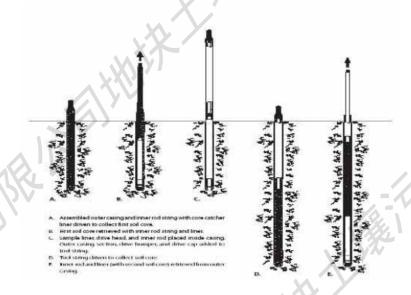


图 5.2-2 土壤钻探过程示意图

- (4)取样:取样工作在专业人士的操作下进行,采样管取出后剖开,根据取样深度将土壤样品按照技术规定要求采集并密封保存在采样瓶中。
- (5)填写记录单、拍照记录:钻孔过程中按照"土壤钻孔采样记录单"要求填写土壤钻孔采样记录单,对采样点、钻进操作、岩芯箱、钻孔记录单等环节进行拍照记录。
- (6) 封孔:钻孔结束后,对于不需设立地下水采样井的钻孔立即封孔并清理恢复作业区地面。
- (7) 点位复测:钻孔结束后,使用 RTK 对钻孔的坐标进行复测,记录坐标和高程。
 - (8) 其他: 钻孔过程中产生的废弃土壤统一收集、处理, 对废弃的一次性手套、

口罩等个人防护用品按照一般固体废物处置要求进行收集处置。

点位标识

套管钻井

图 5.2-3 部分点位土壤现场钻探照片

5.3 现场采样过程

本次地块调查现场工作计划于 2023 年 4 月 10 日开始进行,包括地下水监测井的建立和土壤样品采集。地块内土壤样品的采集在 4 月 10 日完成并于当天送检,所有的水样品在 4 月 12 日采集完毕,并于当天送检。

5.3.1 土壤样品采集

(1) 样品采集

重金属样品采集采用塑料铲或竹铲,挥发性有机物用非扰动采样器,非挥发性 和半挥发性有机物采用不锈钢铲或用表面镀特氧龙膜的采样铲。为避免扰动的影响, 由浅及深逐一取样。采样管密封后,在标签纸上记录样品编码、采样日期和采样人 员等信息,贴到样采样管上,随即放入现场带有冷冻蓝冰的样品箱内进行临时保存。 含挥发性有机物的样品要优先采集、单独采集、不得均质化处理、不得采集混合样。

采样

无扰动采样

XRF 现场速测

PID 现场速测

图 5.3-1 部分点位土壤采样现场工作照片

(2) 土壤样品快速检测

截取取样管指定深度少量土壤样品放入密封袋中,使用光离子化检测仪 PID 对土壤 VOCs 进行快速检测,使用便携式 X 射线荧光光谱仪 XRF 对土壤重金属快速检测。根据快速检测结果筛选需送样检测的土样,并做好数据记录。现场采样快筛记录见质控报告附件 3。

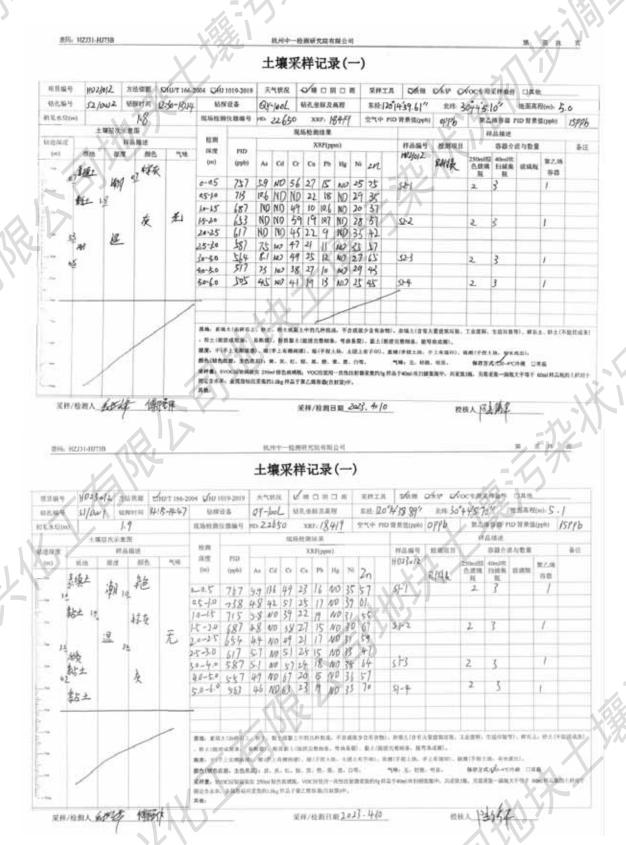


图 5.3-2 部分点位土壤采样点原始记录和快筛记录单

(3) 土壤平行样和质控样采集

根据要求,土壤平行样均不能少于地块总样品数的 10%,平行样在土样同一位 置采集,两种样品类型的检测项目和检测方法应一致,在采样记录单中标注平行样 编号及对应的土壤样品编号。

(4) 土壤样品采集拍照记录

土壤样品采集过程应针对采样工具、采集位置、取样过程、样品信息编号、盛放岩芯样的岩芯箱、现场快速检测仪器使用等关键信息拍照记录,每个关键信息拍摄1张照片,以备质量控制。在样品采集过程中,现场采样人员及时记录土壤样品现场观测情况,包括深度,土壤类型、颜色和气味等表观性状。各个点位现场采样记录照片**见质控报告附件2**。

(5) 人员健康和防护

土壤采样过程中做好人员安全和健康防护,佩戴安全帽和一次性的口罩、手套,严禁用手直接采集土样,使用后废弃的个人防护用品应统一收集处置;采样前后应对采样器进行除污和清洗,不同土壤样品采集应更换手套,避免交叉污染。

5.3.2 地下水样品采集

5.3.2.1 采样井建设

建井之前采用 RTK 定位仪精确定位地下水监测点位置,采样井建设过程包括钻孔、下管、填充滤料、密封止水、成井洗井和填写成井记录单等步骤,具体包括以下内容:

(1) 钻孔

采用 QY-100L 专用土壤取样及钻井设备进行地下水孔钻探,钻孔达到拟定深度后进行钻孔掏洗,以清除钻孔中的泥浆和钻屑,然后静置 2h-3h 并记录静止水位。

(2) 下管

下管前校正孔深,按先后次序将井管逐根测量,确保下管深度和滤水管安装位 置准确无误。井管下放速度不宜太快,中途遇阻时可适当上下提动和转动井管,必 要时应将井管提出,清除孔内障碍后再下管。下管完成后,将其扶正、固定,井管 与钻孔轴心重合。

(3) 滤料填充

将石英砂滤料缓慢填充至管壁与孔壁中的环形空隙内,沿着井管四周均匀填充,避免从单一方位填入,一边填充一边晃动井管,防止滤料填充时形成架桥或卡锁现象。滤料填充过程也要进行测量,确保滤料填充至设计高度。

(4) 密封止水

密封止水应从滤料层往上填充,直至距离地面 50cm。本项目采用膨润土作为止水材料,每填充 10cm 需向钻孔中均匀注入少量的清洁水,填充过程中进行测量,确保止水材料填充至设计高度,静置待膨润土充分膨胀、水化和凝结。

(5) 成井洗井

地下水采样井建成 24h 后,采用贝勒管进行洗井工作。洗井时控制流速,成井洗井达标直观判断水质基本上达到水清砂净,同时采用已购置的便携式检测仪器监测 pH 值、电导率、氧化还原电位等参数值达到稳定(连续三次监测数值浮动在±10%以内)。

(6) 填写成井记录单

成井后测量记录点位坐标及管口高程,填写成井记录单、地下水采样井洗井记录单;成井过程中对井管处理(滤水管钻孔或割缝、包网处理、井管连接等)、滤料填充和止水材料、洗井作业和洗井合格出水等关键环节或信息拍照记录,每个环节不少于1张照片,以备质量控制。地下水建井原始记录**见质控报告附件4**。

下管

滤料填充

采样前洗井

密封止水

图 5.3-3 部分点位地下水现场建井照片

表码: H2J31-H175C - 杭州中一检测研究技有限公司 第 页 共 页

地下水建井/洗井记录 _{项目编号} 117 23 0/2

Dn 监测井编号 成井时间 2023.4.10 14615-14:47 维捷环坎 钻探单位 建井设备型号 QY- 100 L 监测井坐标 天气 监测井结构示意图 井管直径(mm) 检测井口 PID 读数(□ppm □ppb) ☑ 石英砂 □ 其他 材料 填砾 -6.00 起始深度 终止深度一0.50 封孔 监测井 (1,4m) 口 膨润土 □ 其他 封孔 起始深度 -0.50 终止深度 井管总长(m) 监测井 实管长度(m) 1.40 过速管 结构 过滤管长度(m) 4.50 (4.50 m) 沉淀管长度(m) (5.50m) 0.50 地面高程(m) 5.10 井口距地面高度(m) 0.40 水位 井口距水位高度(m) 1.85 埋深 埋深(m) 1.45 水位(m) 3.65 洗井工具 ☑ 贝勒管 □ 低流量地下水采样泵 口 其他 洗出水 洗井 浊度 电导率 单倍并体积 20 pH 日期 量 (L) 次数 (NTU) (µS/cm) □ 洗出 3~5 倍井体积水量后。出水 描述 20234. 第一次 1420 浊度≤10NTU,结束洗井。 ☑ 洗出 3-5 倍井体积水量后,出水 15:17-16:46 20 1398 pH 连续 3 次鹨定的变化在±0.1 以 91 185 内, 独度、电导率连续3次额定的变 第四次 化在10%以内,结束批井。 洗出水 洗井 温度 电导率 浊度 性状 日期 量 (L) 次数 (°C) (µS/cm) 电位(mV) 描述 第一次 14.8 172 2023.414 1267 19.7 1245 9:30-洗 10:12 1234 洗井后出水水质至少 3 项连续 3 次测定的变化达到稳定标准(pH±0.1·以内、温度±0.5℃以内、电导率±10%以内 氧化还原电位±10mV 藏±10%以内、溶解氧±0.3mg/L 或±10%以内、浊度≤10NTU 或±10%以内),结束洗井。 记录人情的作品等

表码: HZJ31-HJ76D 杭州中一检测研究院有限公司 地下水采样和现场检测记录 项目编号 HD2301 平样标准 図HJ 164-2020 図HJ 1019-2019 天气状况 5 气温 20.3 ℃ 气压 100.7 kPa 采样 采样点位 采样 体积 编号 介 性状 时间 (mL) 质 E 40 02 E 40 03 500 11:20 05 500 500 无油化 500 500 500 9 ☑色度(G或P); ☑复和味(G); ☑海洼度(G或P); ☑总硬度(G或P)加 HNO。 pH<2, √域酸盐 (G或P): √氯化物 (G或P): □磷酸盐 (G或P): □游离二氧化 碳 (G或P); □碳酸氢盐 (G或P); ▽挥发性酚类 (G、1L); 加 HaPO4, pH=2, 加 0.01-0.02g 抗坏血酸除余氯。□石油类、动植物油类(G, IL):加 HCl, pH≤2; ☑煮 化物 (G成P) : 加 NaOH, pH>12; ②高锰酸盐指数 (G) : □化学需氧量 (G) : 加 HJ1147-2020 HsO., pH≤2; 【Y阴离子表面活性剂(G 或 P); □BOD; (溶解氧無或 IL 的 G); 【 【 【 Y 经解氧: 水质 溶解氧的制定 电化学探头 型硝酸盐氮、硝酸盐氮(G或P);❷溶解性总固体(G或P);❷氮氮(G或P):加 法 HJ 506-2009 H:SO₄, pH≤2; √氰化物 (P); □碘化物 (G 或 P); □溴化物 (G 或 P); ☑钾、钠、 ☑水温; 水质 水温的测定 温度计或顺例温 鉄、锰、柳、锌、钼、钴、镉、铅、铍、钡、镍(P):加HNO1,pH≤2;12/汞(G或P); 度计测定法 GB/T 13195-1991 HCI 1%,如水为中性,IL 水加液 HCI 10mL;Off (G 或 P);加 HCI;Sf种(G 或 P); 10 挥浊度: 水质 独度的测定 独度计法 HJ 加 1%的 HCI; (4歳化物(G 或 P): 采藏。1L 水样加 NaOH pH 约 9。加入 5%抗坏血酸 1075-2019 5mL,饱和 EDTA3mgL,滴加饱和 Zn(Ac)。溶液至胶体产生; ②六价铬(G 或 P); 加 🗸 臭和味、肉眼可见物、电导率;生活饮用 NaOH, pH 8~9; EVOCs (2 瓶 40ml 玻璃瓶); 25mg 抗坏血酸, 加 HCl, pH≤2; SVOCs 水标准检验方法 感官性状和物理指标 (2L, G); □石油烃 (C₆-C₈); 取2瓶40ml玻璃瓶,加磷酸pH≤2, 0.3g 抗环血酸; GB/T 5750.4-2006 ②石油烃 (C₁₀, C₀₀); 2L, G, 加 HCl, pH≤2; □农药类 (2L, G); 加 HCl, pH≤20 图集化还原电位: 电极法 《水和废水监测 □微生物(500mL·S): 加 Na₂S₂O₃ 分析方法》(第四版增补版)国家环境保护 总周 (2006年) 备注: BG-棕色玻璃瓶, CG-无色玻璃瓶, S-灭菌瓶, P-聚乙烯瓶, D-溶解氧瓶, E-吹扫 捕隼瓶。 采样/检测人物的作品的

图 5.3-4 部分点位地下水采样点位建井、洗井、采样记录单

5.3.2.2 采样井洗井

采样前洗井注意事项如下:

- (1) 采样前洗井在成井洗井 48h 后开始。
- (2) 采样前洗井避免对井内水体产生气提、气曝等扰动。采用贝勒管进行洗井, 贝勒管汲水位置为井管底部,控制贝勒管缓慢下降和上升,原则上洗井水体积应达 到 3-5 倍滞水体积。
 - (3) 洗井前对 pH 计、电导率和氧化还原电位仪等检测仪器进行现场校正。开

始洗井时,以小流量抽水,同时洗井过程中每隔 5 分钟读取并记录 pH、电导率和氧化还原电位(ORP),连续三次采样达到以下要求结束洗井:取水总量达到监测井内体积的 3 倍以上。

- (4) 采样前洗井过程填写地下水采样井洗井记录单,洗井原始记录**见质控报告 附件 4。**
 - (5) 采样前洗井过程中产生的废水,统一收集处置。

5.3.2.3 地下水样品采集

(1) 样品采集操作

采样洗井达到要求后,测量并记录水位,若地下水水位变化小于 10cm,则立即采样;若地下水水位变化超过 10cm,待地下水位再次稳定后采样。

对于未添加保护剂的样品瓶,地下水采样前用待采集水样润洗 2-3 次。使用贝勒管进行地下水样品采集时,缓慢沉降或提升贝勒管。取出后,通过调节贝勒管下端出水阀或低流量控制器,使水样沿瓶壁缓缓流入瓶中,直至在瓶口形成一向上弯月面,旋紧瓶盖,避免出水口接触液面,避免采样瓶中存在顶空和气泡。地下水装入样品瓶后,标签纸上记录样品编码、采样日期和采样人员等信息,贴到样品瓶上。地下水采集完成后,样品瓶应用泡沫塑料袋包裹,并立即放入现场装有冷冻蓝冰的样品箱内保存,装箱用泡沫塑料等分隔以防破损。坚持"一井一管"的原则,避免交叉污染,同时根据《地下水环境监测技术规范》(HJ 164-2020),不同的分析指标分别取样,保存于不同的容器中,并根据不同的分析指标在水样中加入相应的保存剂。

(2) 地下水样品采集拍照记录

地下水样品采集过程应对洗井、装样以及采样过程中现场快速监测等环节进行 拍照记录,每个环节至少1张照片。

(3) 人员健康和安全防护

含挥发性有机物的样品要优先采集。地下水采样过程中应做好人员安全和健康 防护,佩戴安全帽和一次性的个人防护用品(口罩、手套等),废弃的个人防护用 品等垃圾集中收集处置。

采集水样

图 5.3-5 部分点位地下水现场采样照片

监测井的钻孔、建井和洗井方法参照《岩土工程勘察规范》(GB 50021-2001)、 《供水水文地质勘察规范》(GB 50027-2001)、《供水水文地质钻探与凿井操作规程》 (CJJ 13-87)、《地下水环境监测技术规范》(HJ/T 164-2020)及《建设用地土壤污 染风险评估技术导则》(HJ25.3-2019)进行。

本项目地下水监测井采用 OY-100L 型钻机自带的直接贯入钻井系统进行, 地下水 建井管使用 PVC 材料,滤料为 2 mm 的石英砂,选用膨润土作为止水材料,地下水建 井记录表详见附件。地下水监测井洗井分建井后和取样前二次进行。建井后洗井在建井 后马上进行,洗至水质直观判断达到水清砂净。地块内水样的采集工作集中在现场工作 最后一天之内完成。取样过程均使用贝勒管,取样过程中做到一孔一管,保证样品之间 不会产生相互污染。

现场实际采样情况 5.3.3

依据采样工作计划,结合现场地块特征,本项目实际确定钻探7个土壤监测点 位,共计送检了31个土壤样品(其中3个土壤平行样);4个地下水监测点位,共 计送检了5个地下水样品(其中1个地下水平行样)。各点位采样位置按照方案计 划进行,实际各个点位现场采样信息见表 5.3-1、实际调查地块内采样点位见图 5.3-6。

表 5.3-1 现场实际采样点位信息汇总表

点位: S1/DW1(N=3	30°44'5.70" E=120°14'38.89")
检测类型 土壤和地下水	
钻探深度 6米	

土壤样品数	4 个
	0-0.5m
送检层位	1.5-2.0m
及엔宏型	3.0-4.0m
	5.0-6.0m
建井深度	6米
水样数量	2 个

点位: S2/DW2 (N=30°44'5.10" E=120°14'39.61")

检测类型	土壤和地下水		
钻探深度	6米		
土壤样品数	4 个		
	0-0.5m		
送检层位	1.5-2.0m		
	3.0-4.0m		
	5.0-6.0m		
建井深度	6米		
水样数量	1 1		

点位: S3/DW3(N=30°44'4.43" E=120°14'38.98")

检测类型	土壤和地下水		
钻探深度	6米		
土壤样品数	5 个		
送检层位	0-0.5m		
	1.5-2.0m(+平行样)		
这個 居世	3.0-4.0m		
	5.0-6.0m		
建井深度	6米		
水样数量	1 个		

点位: S4 (N=30°44'4.57" E=120°14'40.33")

检测类型	土壤
钻探深度	6米
土壤样品数	5个
送检层位	0-0.5m 1.5-2.0m 3.0-4.0m 5.0-6.0m(+平行样)

点位: S5 (N=30°44'4.12" E=120°14'38.22")

检测类型 土壤

钻探深度	6米	
土壤样品数	4个	
	0-0.5m	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
送检层位	1.5-2.0m	
	3.0-4.0m	
	5.0-6.0m	
	点位: S6 (N=30°	44'6.15" E=120°14'39.73")
检测类型	土壤	
钻探深度	6米	
土壤样品数	5个	
	0-0.5m(+平行样)	XIII
送检层位	1.5-2.0m	
	3.0-4.0m	
	5.0-6.0m	
	点位: S7/DW4(N=3	0°44'2.74" E=120°14'37.82")
检测类型	土壤和地下水	
钻探深度	6米	
土壤样品数	4个	
	0-0.5m	MANY of the Manual Control of the Co
送检层位	1.5-2.0m	12 12 12 12 12 12 12 12 12 12 12 12 12 1
(人) (人) (人) (人)	3.0-4.0m	
	5.0-6.0m	

6米

1 个

建井深度

水样数量

图以同期

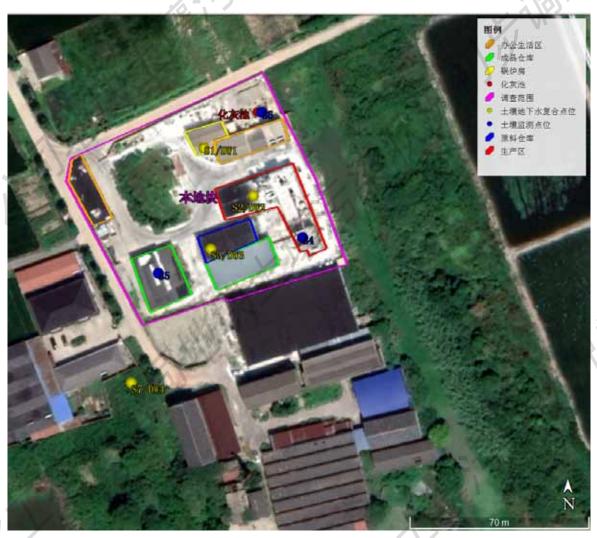


图 5.3-6 调查地块内土壤、地下水实际采样点位分布示意图 (此图为 2019 年 8 月的历史影像图)

5.3.4 样品保存与运输

5.3.4.1 样品保存

土壤和地下水的样品保存、运输和流转按照《建设用地土壤污染风险管控和修复监测技术导则》(HJ 25.2-2019)、《土壤环境监测技术规范》(HJ/T 166-2004)、《地下水环境监测技术规范》(HJ164-2020)、《重点行业企业用地调查样品采集保存和流转技术规定(试行)》、《全国土壤污染状况详查土壤(地下水)样品分析测试方法技术规定》、《浙江省环境监测质量保证技术规定》(第三版试行)等标准规范的要求执行。

样品保存包括现场暂存和流转保存两个主要环节,主要包括以下内容:

- (1)根据不同检测项目要求,在采样前向样品瓶中添加一定量的保护剂,在样品瓶标签上标注检测单位内控编号,并标注样品有效时间。
- (2)样品现场暂存。采样现场配备样品保温箱,内置冰冻蓝冰。样品采集后立即存放至保温箱内,样品采集当天不能寄送至实验室时,则在 4℃温度下避光保存。
- (3)样品流转保存。样品保存在有冰冻蓝冰的保温箱内寄送或运送到实验室, 样品的有效保存时间为从样品采集完成到分析测试结束。

整个过程中,各级质量检查人员对样品标识、包装容器、样品状态、保存条件等进行检查并记录。对检查中发现的问题,质量检查人员及时向有关责任人指出,并根据问题的严重程度督促其采取适当的纠正和预防措施。

5.3.4.2 样品运输

(1) 装运前核对

样品流转运输保证样品完好并低温保存,采用适当的减震隔离措施,严防样品 瓶的破损、混淆或沾污,在保存时限内运送至分析实验室。

由现场采样工作组中样品管理员和质量监督员负责样品装运前的核对,对样品与采样记录单进行逐个核对,按照样品保存要求进行样品保存质量检查,检查无误后分类装箱。样品装运前,填写《环境样品交接单》,包括采样人、采样时间、样品性状、检测项目和样品数量等信息。水样运输前将容器的外(内)盖盖紧。样品装箱过程中采取一定的分隔措施,以防破损,用泡沫材料填充样品瓶和样品箱之间

空隙。

(2) 样品运输

样品流转运输保证样品安全和及时送达,本项目选用专用小汽车将土壤和地下水样品运送至实验室,同时确保样品在保存时限内能尽快运送至检测实验室。

本项目保证了样品运输过程中低温和避光的条件,采用了适当的减震隔离措施,避免样品在运输和流转过程中损失、污染、变质(变性)或混淆,防止盛样容器破损、混淆或沾污。

(3) 样品接收

样品送达实验室后,由样品管理员进行接收。样品管理员立即检查样品箱是否有破损,按照《环境样品交接单》清点核实样品数量、样品瓶编号以及破损情况,对样品进行符合性检查,确认无误后在《环境样品交接单》上签字。本项目样品管理员为熟悉土壤和地下水样品保存、流转的技术要求的专业技术人员。符合性检查包括:样品包装、标识及外观是否完好;样品名称、样品数量是否与原始记录单一致;样品是否损坏或污染。若出现样品瓶缺少、破损或样品瓶标签无法辨识等重大问题,样品管理员在《环境样品交接单》中进行标注,并及时与现场项目负责人沟通。实验室收到样品后,按照《环境样品交接单》要求,立即安排样品保存和检测。

5.4 实验室化学分析检测

本次调查样品的分析检测委托杭州中一检测研究院有限公司、浙江中一检测研究院股份有限公司(分包单位),以上公司均具备相应的检测资质,资质及检测能力项**见质控报告附件 6**,样品检测时间为 2023 年 4 月 10 日~4 月 21 日,所有的样品的污染物参数测试由通过 CMA 认证的检测单位首选国家标准和规范中规定的分析方法。

5.5 质量控制

本项目的质量控制和质量管理分为现场样品采集、样品流转和实验室分析的质量控制和质量管理三个部分。其中内部质量控制可根据《建设用地土壤污染状况调查质量控制技术规定(试行)》中的要求进行。建立健全内部质量管理制度,制定

和实施内部质量控制计划,明确内部质量控制人员和内部质量控制工作安排,严格落实全过程质量保证与质量控制措施。

5.5.1 采样准备质量控制

采样组在采样前已经做好相关的培训、防护、设备维护、人员分工、现场定点等工作,并填写采样前准备事项一览表。采样前的质量控制已经完成的准备工作主要如下:

- 1)对采样人员进行专门的培训,采样人员已掌握现场采样技术、懂得安全操作的有关知识和处理方法:
- 2) 在采样前做好个人的防护工作,已准备佩戴安全帽和一次性防护口罩在采样过程中佩戴:
- 3)根据本布点检测方案,已准备采样计划单、钻探记录单、土壤采样记录单、 地下水采样记录单、样品追踪单及采样布点图;
- 4)实验室和钻探队在采样过程中准备了光离子化检测仪(PID)、便携式 X 射线荧光光谱分析(XRF)、RTK、相机、样品瓶、标签、签字笔、保温箱、干冰、橡胶手套等采样需要的设备。

5.5.2 现场采样质量控制

现场采样时详细填写现场观察的记录单,比如土层深度、土壤质地、气味等,以便为分析工作提供依据。为避免采样过程中钻机的交叉污染,每个钻孔采样前需要对钻探设备进行清洁;与土壤接触的其它采样工具,在重复使用时也要进行清洗或使用一次性塑料袋进行保护。为了防止采样过程中造成二次污染,采样过程中还应该注意以下情况:

- (1) 采样过程中采样人员不应有影响采样质量的行为,不得在采样时、样品分装时及样品密封的现场吸烟,不得随意丢弃采样过程中产生的垃圾以及可能影响土壤及地下水环境质量的物品等。
 - (2) 采集土壤或土柱原状保留, 待取样结束后统一回填。
- (3)每完成一个样品的采集应更换采样手套并清洁采样工具,采样人员佩戴的手套、口罩等统一收集,集中处理。

为确保采集、运输、贮存过程中的样品质量,本项目在现场采样过程中设定现场质量控制样品。在采样过程中,质控样的数量主要遵循以下原则:每10个样品设置一个平行样。本项目共设置3个土壤平行样,1个地下水平行样,满足质控要求。同一样品批次内,放置一个空白样。

空白样品采集注意事项:

- ①每批次土壤或地下水样品均应采集1个全程序空白样。采样前在实验室将5 ml 或 10 ml 甲醇(土壤样品)或将二次蒸馏水或通过纯水设备制备的水作为空白试剂水 (地下水样品)放入40 ml 土壤样品瓶或地下水样品瓶中密封,将其带到现场。与采样的样品瓶同时开盖和密封,随样品运回实验室,按与样品相同的分析步骤进行处理和测定,用于检查样品采集到分析全过程是否受到污染。
- ②每批次土壤或地下水样品均应采集 1 个运输空白样。采样前在实验室将 5 ml 或 10 ml 甲醇(土壤样品)或将二次蒸馏水或通过纯水设备制备的水作为空白试剂水(地下水样品)放入 40 ml 土壤样品瓶或地下水样品瓶中密封,将其带到现场。采样时使其瓶盖一直处于密封状态,随样品运回实验室,按与样品相同的分析步骤进行处理和测定,用于检查样品运输过程中是否受到污染。
- ③每批次地下水样品应采集1个设备空白样。采样前从实验室将二次蒸馏水或通过纯水设备制备的水作为空白试剂水带到现场,使用适量空白试剂水浸泡清洁后的采样设备、管线,尽快收集浸泡后的水样,放入地下水样品瓶中密封,随样品运回实验室,按与样品相同的分析步骤进行处理和测定,用于检查采样设备是否受到污染。设备空白样一般应在完成潜在污染较重的监测井地下水采样之后采集。

5.5.3 样品流转质量控制

- (1)现场采集的样品在放入保温箱进行包装前,应对每个样品瓶上的采样编号、 采样日期、采样地点等相关信息进行核对,并登记造册,同时应确保样品的密封性 和包装的完整性。
- (2)核对后的样品应立即放入包装完整、密封性良好、内置有适量蓝冰的保存箱中,然后再进行包装。包装后的保温箱应确保内部温度不高于4℃,直至样品安全抵达分析实验室。

5.5.4 实验室分析质量控制

实验室质量控制包括实验室内的质量控制(内部质量控制)和实验室间的质量控制(外部质量控制)。前者是实验室内部对分析质量进行控制的过程,后者是指由第三方或技术组织通过发放考核样品等方式对各实验室报出合格分析结果的综合能力、数据的可比性和系统误差做出评估的过程。

实验室内部质量控制包括空白试验、定量校准控制、精密度控制、正确度控制等。每批次内部质控样品分析应当与实际样品同步进行分析测试。内部质控样品的插入比例和相关指标要求应当优先满足标准分析方法的质量保证与质量控制规定。当标 准分析方法无规定时,按照《重点行业企业用地调查质量保证与质量控制技术规定(试行)》(环办土壤函〔2017〕1896 号)的相关要求执行。开展实验室检测分析外部质量控制的,密码平行样品由承担该 地块样品分析测试任务的检验检测机构和第三方检验检测机构分别检测。检测时应尽量选用相同或等效的分析方法,以保证结果的可比性。实验室内和实验室间密码平行样品测试结果比对分析按照附 4相关要求开展。原则上,室内密码平行样品和室间密码平行样品合格率均应达到100%。当密码平行样品不合格时,应当查明原因,采取适当的纠正措施,必要时进行留样复测或重采重测。

为确保样品分析质量,本项目土壤及地下水样品检测单位选择杭州中一检测研究院有限公司,该公司已获得计量认证合格(CMA)资质,资质认定证书见附件。 为了保证分析样品的准确性,除了实验室已经过 CMA 认证,仪器按照规定定期校正外,在进行样品分析时还对各环节进行质量控制,随时检查和发现分析测试数据是否受控(主要通过标准曲线、精密度、准确度等)。

本项目样品分析同时采取了以下质控措施:

- (1) 样品检出限: 低于相关污染物评价标准值;
- (2) 实验室质控样品回收率:满足方法要求;
- (3) 加标回收率: 基质加标回收率满足方法要求;
- (4) 双样:双样及双样加标回收率满足相关方法要求;
- (5) 样品有效性: 在样品保存有效期内完成所有样品分析工作。

本地块检测样品的实验室质控检测结果详见检测报告。从报告中可见,所有实

验室质控样品有检出物质的检测数据的偏差均在比差控制范围以内,满足样品采集 QA/QC 国际惯例要求。

5.5.5 质控总结

根据杭州中一检测研究院有限公司提供的本次调查地块质量控制报告,本批次 共有土壤样品 28 个,水样 4 个,检测参数共 1672 项,其中实验室内部进行了样品 空白检测参数 410 项,空白样品加标检测参数 15 项,样品加标检测参数 118 项,平 行样分析 164 项,有证标准物质检测参数 36 项,总计分析了 743 项内部质控,总内 部质控比例 44.4%,符合要求。

现场采集了3个平行土样,2个空白样,1个平行水样,3个空白样。

质控方式	样品数量	项目数量	合格率	评价
土壤样品全程序空白	1	41	100%	合格
土壤样品运输空白	1	41	100%	合格
土壤样品实验室空白	2	56	100%	合格
水样样品全程序空白	1	68	100%	合格
水样样品运输空白	1	68	100%	合格
水样设备淋洗空白	1	68	100%	合格
水样样品实验室空白	1	68	100%	合格
土壤实验室平行	2	97	100%	合格
水样实验室平行	1	67	100%	合格
土壤有证标准物质	7	14	100%	合格
水样有证标准物质	12	22	100%	合格
土壤样品加标	8	80	100%	合格
土壤空白加标	2	2	100%	合格
水样样品加标	4	38	100%	合格
水样空白加标	1	13	100%	合格
合计	45	743	100%	合格

表 5.5-1 质控总结

综上所述,在样品采集、运输与保存、样品制备、实验室分析、数据审核等各个环节上,杭州中一检测研究院有限公司均参照《重点行业企业用地调查调查样品

采集保存和流转技术规定》(试行)、《重点行业企业用地调查质量保证与质量控 A定》。2程的质量的 制技术规定(试行)》、《浙江省环境监测质量保证技术规定》(第三版试行)和 其他相关标准规定进行全流程质量控制,严格执行全过程的质量保证和质量控制工

6 地块调查结果与评价

6.1 水文地质条件

6.1.1 地质特征

本次调查现场钻孔取样后,现场检测人员根据钻取出的土壤岩芯情况,记录调查深度范围内的土层情况,并现场填写土壤采样原始记录表,详情**见质控报告附件3**,根据土壤采样原始记录表可知,本次调查的土层从上至下依次为素填土、粘土、淤泥质粘土、粘土,与引用的地勘资料的土层结构基本一致。具体土层情况为:

杂填土:杂色,无气味,潮,深度为 0~1.5m,场地中所有钻孔中均有揭露。

粘土: 棕灰色, 无气味, 潮~湿, 深度为 0.3~3.3m, 场地中所有钻孔中均有揭露。淤泥质粘土: 灰色, 无气味, 湿, 深度为 2.8~4.7m, 场地中所有钻孔中均有揭露。

粘土:灰色,无气味,湿,深度为 4.1~6.0m,场地中所有钻孔中均有揭露。

6.1.2 地下水特征

现场采样期间测量的地块地下高程水位在 3.65m (DW1) 至 4.5m (DW4) 之间。调查地块地下水高程水位测量结果见表 6.1-1,采样期间等水位图及流向见图 6.1-1。由图 6.1-1 可知,本地块地下水总体流场趋势为自西南向东北处流动。根据前文叙述引用地块的地下水流向大致为西南往东北方向,因此两个地块的地下水总体流场趋势是一致的。

序号	编号	水位高程(m)	经度 (E)	纬度(N)
1	DW1	3.65	120.2441361	30.73491667
2	DW2	3.7	120.2443361	30.73475000
3	DW3	4.25	120.2441611	30.73456389
4	DW4	4.5	120.2438389	30.73409444

表 6.1-1 地下水高程水位测量记录一览表

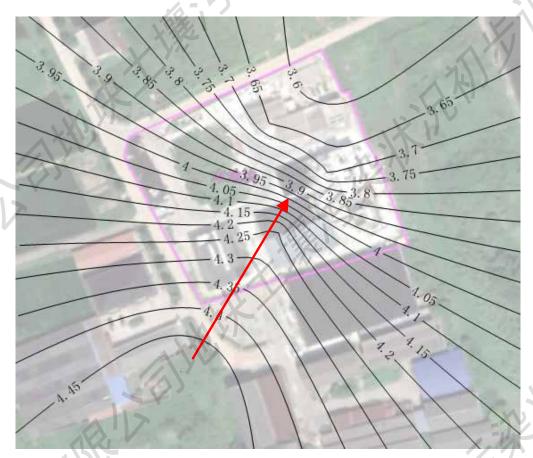


图 6.1-1 采样期间本地块地下水流向示意图

6.2 评价标准

6.2.1 土壤评价标准

本地块用地类型为工业用地,故土壤评价标准执行《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)第二类用地筛选值,GB36600-2018中未规定的部分指标,美国 EPA 通用地土壤筛选值执行。

根据上述原则,本项目检出污染物选用的土壤筛选值见表 6.2-1。

		CAS 编号	筛选值(mg/kg)	管控值(mg/kg)
	序号 污染物项目		第二类用地	第二类用地
重金属和无机物				74/13/
1	砷	7440-38-2	60 [©]	140
2	镉	7440-43-9	65	172
3	铬 (六价)	18540-29-9	5.7	78

表 6.2-1 土壤分析检测项目评价标准

	7/0			
4	铜	7440-50-8	18000	36000
5	铅	7439-92-1	800	2500
6	汞	7439-97-6	38	82
7	镍	7440-02-0	900	2000
挥发性有机	物		1/1	1/
8	四氯化碳	56-23-5	2.8	36
9	氯仿	67-66-3	0.9	10
10	氯甲烷	74-87-3	37	120
11	1,1-二氯乙烷	75-34-3	9	100
12	1,2-二氯乙烷	107-06-2	5	21
13	1,1-二氯乙烯	75-35-4	66	200
14	顺-1,2-二氯乙烯	156-59-2	596	2000
15	反-1,2-二氯乙烯	156-60-5	54	163
16	二氯甲烷	75-09-2	616	2000
17	1,2-二氯丙烷	78-87-5	5	47
18	1,1,1,2-四氯乙烷	630-20-6	10	100
19	1,1,2,2-四氯乙烷	79-34-5	6.8	50
20	四氯乙烯	127-18-4	53	183
21	1,1,1-三氯乙烷	71-55-6	840	840
22	1,1,2-三氯乙烷	79-00-5	2.8	15
23	三氯乙烯	79-01-6	2.8	20
24	1,2,3-三氯丙烷	96-18-4	0.5	5
25	氯乙烯	75-01-4	0.43	4.3
26	苯	71-43-2	4	40
27	氯苯	108-90-7	270	1000
28	1,2-二氯苯	95-50-1	560	560
29	1,4-二氯苯	106-46-7	20	200
30	乙苯	100-41-4	28	280
31	苯乙烯	100-42-5	1290	1290
32	甲苯	108-88-3	1200	1200
33	间二甲苯+对二甲 苯	108-38-3, 106-42-3	570	570
34	邻二甲苯	95-47-6	640	640
半挥发性有	机物			
6/6 / 1				

硝基苯	98-95-3	76	760
苯胺	62-53-3	260	663
2-氯酚	95-57-8	2256	4500
苯并[a]蒽	56-55-3	15	151
苯并[a]芘	50-32-8	1.5	15
苯并[b]荧蒽	205-99-2	15	151
苯并[k]荧蒽	207-08-9	151	1500
崫	218-01-9	1293	12900
二苯并[a,h]蒽	53-70-3	1.5	1.5
茚并[1,2,3-cd]芘	193-39-5	15	151
萘	91-20-3	70	700
	WY		
石油烃(C10-C40)	1	4500	9000
锡②	7440-31-5	610000	1
氯 ^②	7782-50-5	91000	1
	本版 2-氯酚 苯并[a]蒽 苯并[a]克 苯并[b]荧蒽 苯并[k]荧蒽	苯胺 62-53-3 2-氯酚 95-57-8 苯并[a]蒽 56-55-3 苯并[a]芘 50-32-8 苯并[b]荧蒽 205-99-2 苯并[k]荧蒽 207-08-9 直 218-01-9 二苯并[a,h]蒽 53-70-3 茚并[1,2,3-cd]芘 193-39-5 萘 91-20-3	苯胺 62-53-3 260 2-氯酚 95-57-8 2256 苯并[a]蔥 56-55-3 15 苯并[a]芘 50-32-8 1.5 苯并[b]荧蒽 205-99-2 15 苯并[k]荧蒽 207-08-9 151 蘆 218-01-9 1293 二苯并[a,h]蒽 53-70-3 1.5 茚并[1,2,3-cd]芘 193-39-5 15 萘 91-20-3 70 石油烃(C ₁₀ -C ₄₀) / 4500 锡 ² 7440-31-5 610000

注:①具体地块土壤中污染物检测含量超过筛选值,但等于或者低于土壤环境背景值水平的,不纳入污染物地块管理。②参照执行美国 EPA 通用土壤筛选值。

6.2.2 地下水评价标准

调查地块为疑似污染地块,由于当前地块用地性质为工业用地,故地下水环境质量可参照《地下水质量标准》(GB/T 14848-2017)IV类标准值进行评价,GB/T 14848-2017 中未规定的部分指标,参照《上海市建设用地地下水污染风险管控筛选值补充指标》中第二类用地筛选值以及美国 EPA 通用地下水筛选值执行。

根据上述原则,本次调查地下水分析检测项目和评价标准如下表,结果见表 6.2-2。

Programme and Market Market						
序号	指标	限值	标准依据			
1	рН	5.5≤pH≤6.5 8.5 <ph≤9.0 (Ⅲ类标准 6.5≤pH<8.5)</ph≤9.0 				
2	色度	25	《地下水质量标准》 (GB/T 14848-2017) IV			
3	嗅和味	无	类标准			
4	浑浊度	10	v			

表 6.2-2 地下水分析检测项目评价标准

X	HIT	=3	2XX	*	THE STATE OF THE S
	y <u>-</u>	湖州市重兆吴兴化工有限2	公司地块土壤污染状况初步调查报	· · · · · · · · · · · · · · · · · · ·	
		+ 111 - 7 (3.4%)	-]
ムリン	5	肉眼可见物	无		
	6	总硬度(mg/L)	650	7	
	7	溶解性总固体 (mg/L)	2000		
-	8	硫酸盐 (mg/L)	350		
•	9	氯化物(mg/L)	350	,	
	10	铁 (mg/L)	2.0		
	11	锰 (mg/L)	1.50		
	12	铜(mg/L)	1.50		
X	13	锌 (mg/L)	5.00		4
/ K	14	铝 (mg/L)	0.50		
	15	挥发性酚类(mg/L)	0.01		~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	16	阴离子表面活性剂(mg/L)	0.3		(4)
	17	耗氧量(mg/L)	10.0		
	18	氨氮(mg/L)	1.50	1X	//
	19	硫化物(mg/L)	0.10	-xv.)/\	
	20	钠 (mg/L)	400	1514	
	21	总大肠菌群 (MPN/100mL 或 CFU/100mL)	100		
	22	菌落总数(CFU/mL)	1000	XXL	
	23	亚硝酸盐(mg/L)	4.80		
. 1	24	硝酸盐(mg/L)	30.0		
A 52	25	氰化物(mg/L)	0.1		
	26	氟化物(mg/L)	2.0		
V.T	27	碘化物(mg/L)	0.50		=1)2/
	28	汞 (mg/L)	0.002		-1/2
	29	砷 (mg/L)	0.05		2-17)
	30	硒 (mg/L)	0.1		
	31	镉(mg/L)	0.01	X	
	32	铬 (六价) (mg/L)	0.10		
	33	铅 (mg/L)	0.10	W.Y.	
	34	三氯甲烷(ug/L)	300	777	
	35	四氯化碳(ug/L)	50.0	())'	
	36	苯(ug/L)	120	V	10
	37	甲苯(ug/L)	1400		X
Į l	-// / / \			1	1 / /

a Hill

	7(). I *		
38	镍(mg/L)	0.10	J. V
39	二氯甲烷(ug/L)	500	~(1)
40	1,2-二氯乙烷(ug/L)	40.0	人 发)'
41	1,1,1-三氯乙烷(ug/L)	4000	10
42	1,1,2-三氯乙烷(ug/L)	60.0	1/
43	1,2-二氯丙烷(ug/L)	60.0	
44	氯乙烯(ug/L)	90.0	
45	1,1-二氯乙烯(ug/L)	60.0	
46	1,2-二氯乙烯(ug/L)	60.0	
47	三氯乙烯(ug/L)	210	
48	四氯乙烯(ug/L)	300	
49	氯苯(ug/L)	600	
50	邻二氯苯(1,2-二氯苯) (ug/L)	2000	
51	对二氯苯(1,4-二氯苯) (ug/L)	600	XI:n
52	乙苯 (ug/L)	600	, =1,2,1
53	二甲苯(总量)(ug/L)①	1000	- (1)
54	苯乙烯(ug/L)	40.0	TO SE
55	萘(ug/L)	600	XX
56	苯并[b]荧蒽(ug/L)	8.0	
57	苯并[a]芘(ug/L)	0.50	
58	1,1-二氯乙烷(mg/L)	1.2	
59	1,1,1,2-四氯乙烷(mg/L)	0.9	
60	1,1,2,2-四氯乙烷(mg/L)	0.6	
61	1,2,3-三氯丙烷(mg/L)	0.6	
62	硝基苯(mg/L)	2	 《上海市建设用地地下
63	苯胺(mg/L)	7.4	水污染风险管控筛选值
64	2-氯酚(mg/L)	2.2	补充指标》中第二类用地
65	苯并[a]蒽(mg/L)	0.0048	筛选值
66	苯并[k]荧蒽(mg/L)	0.048	7 / //J
67	䓛(mg/L)	0.48	
68	二苯并[a,h]蒽(mg/L)	0.00048	(/)
69	茚并[1,2,3-cd]芘(mg/L)	0.0048	·

70	石油烃(C ₁₀ ~C ₄₀)(mg/L)	1.2	
71	氯甲烷(ug/L)	190	美国 EPA 通用筛选值中
72	锡(ug/L)	22000	地下水标准
× 0-8+ (+	

注: ①二甲苯(总量)为邻二甲苯、间二甲苯、对二甲苯3种异构体加和。

6.3 土壤检测结果与评价分析

6.3.1 现场快筛结果

本次土壤污染状况初步调查在地块内设置 6 个土壤采样点,地块外设置 1 个土壤对照点。各土壤点位实际钻探深度均为 6m。土壤现场采样过程中,0~3m 采样间隔为 0.5m, 3~6m 采样间隔为 1m, 现场各样品均使用 PID、XRF 仪器进行快速检测,现场采样快筛记录**见质控报告附件 3。**

根据现场快筛结果,各土壤样品快速检测均未超标。本次选取每个土壤柱状样的表层、底层以及快速检测数据相对较大的样品进行送检,每个点位选取 4 个样品,共计送检 28 个土壤样品,另现场采集并送检 3 份土壤现场平行样。

6.3.2 土壤检测结果汇总

实验室分析数据汇总见表 6.3-1, 其中未列出项均为未检出,详细数据见文本附件 3 检验检测报告。

表 6.3-1 土壤样品污染检出情况表

(单位: mg/kg, pH 无量纲)

							A 11/			
检测 项目	砷	镉	铜	铅	汞	镍	氯离子*	锡	pН	石油烃 C ₁₀ - C ₄₀
筛选值	60	65	18000	800	38	900	91000	610000	/	4500
S1-1	5.69	38.8	26	10.3	0.193	29	3.3	5.2	6.31	ND
S1-2	4.59	0.86	18	13.1	0.091	26	1.6	6.0	8.15	10
S1-3	22.7	0.15	23	23.8	0.070	30	0.16	4.1	7.28	13
S1-4	7.19	0.19	19	20.6	0.913	31	0.71	5.3	8.20	ND
S2-1	4.68	1.92	34	29.3	0.144	37	0.53	4.0	6.14	28
S2-2	1.31	0.24	19	13.9	0.082	27	1.1	5.3	8.11	ND
S2-3	7.52	0.13	20	24.5	1.80	25	0.35	4.3	6.98	41
S2-4	8.02	0.08	29	22.5	0.073	40	0.51	4.6	7.97	ND
S3-1	5.00	0.45	33	26.3	0.179	36	4.2	17.5	6.93	ND

		1					i			<u> </u>
检测 项目	砷	镉	铜	铅	汞	镍	氯离子*	锡	рН	石油烃 C10- C40
筛选值	60	65	18000	800	38	900	91000	610000		4500
S3-2	2.77	0.10	18	13.4	0.099	24	2.5	5.0	8.16	10
S3-2P	2.53	0.09	19	13.3	0.098	26	2.7	5.4	8.18	8
S3-3	5.28	0.32	20	16.2	0.063	27	0.74	4.7	6.90	ND
S3-4	8.22	0.10	28	21.3	0.090	40	0.43	5.2	8.05	ND
S4-1	5.10	0.21	24	27.7	2.94	30	4.1	4.8	7.49	14
S4-2	1.06	0.08	16	13.9	0.063	27	4.2	4.2	7.72	ND
S4-3	6.29	5.86	18	15.5	7.79	27	1.3	4.6	6.90	14
S4-4	6.70	0.07	35	25.5	0.066	46	0.94	5.4	7.51	ND
S4-4P	7.29	0.08	37	26.6	0.085	47	0.79	_	7.47	ND
S5-1	9.72	21.0	35	32.0	8.56	37	1.2	4.5	8.42	12
S5-2	2.15	0.31	21	16.3	0.099	28	2.8	5.0	8.62	9
S5-3	10.9	0.31	32	23.3	0.115	38	1.0	5.3	6.01	26
S5-4	6.31	0.27	25	25.8	0.119	35	0.51	4.8	8.22	ND
S6-1	4.88	46.6	24	20.8	0.279	30	2.0	9.2	6.70	9
S6-1P	4.53	41.8	23	18.0	0.269	31	1.8	9.7	6.75	8
S6-2	1.81	2.10	17	13.6	0.066	24	1.4	5.3	7.87	10
S6-3	10.0	1.12	27	27.6	0.059	29	0.31	5.0	7.35	12
S6-4	10.7	0.27	38	28.7	0.093	48	0.59	4.3	7.84	ND
S7-1	4.98	0.69	28	28.2	0.012	31	0.75	4.1	8.22	7
S7-2	4.22	0.21	19	14.7	4.50	29	1.6	4.5	8.48	6
S7-3	4.86	0.18	22	18.1	1.22	30	1.2	4.9	7.41	ND
S7-4	6.00	0.20	24	29.2	0.102	38	0.67	4.4	8.18	14
是否 达标	达标	达标	达标	达标	达标	达标	达标	达标	/	达标

^{*}注: 氯离子检测浓度单位为 mmol/kg。

6.3.3 土壤检测结果分析和评价

6.3.3.1 土壤pH检测结果分析

本次送检的地块内土壤样品 pH 值为 6.01~8.62, 对照点土壤样品 pH 值为 7.41~8.18, 地块内与对照点的土壤样品 pH 值结果相近。

6.3.3.2 土壤重金属及特征污染物检测结果分析

检测结果表明,本次送检的 31 个土壤样品(其中土壤平行样 3 个)中除六价铬均未检出外,其余重金属指标及特征污染物在所有受检的土壤样品中均有检出(未检测项除外)。检出的重金属及特征污染物含量均未超过《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)第二类用地筛选值及美国 EPA通用土壤筛选值。

检测结果见表 6.3-1 和检测报告(文本附件 3),各指标分析统计见表 6.3-2。

分析物	评价标准 (mg/kg)	背景点浓度范围 (mg/kg)	背景点超标率(%)	地块内浓度范围 (mg/kg)	检出 率 (%)	超标率 (%)	最大超 标倍数
砷	60	4.22~6.00	0	1.06~22.7	100	0	0
镉	65	0.18~0.69	0	0.07~46.6	100	0	0
铜	18000	19~28	0	16~38	100	0	0
铅	800	14.7~29.2	0	10.3~32	100	0	0
汞	38	0.012~4.50	0	0.059~8.56	100	0	0
镍	900	29~38	0	24~48	100	0	0
锡	610000	4.1~4.9	0	4~17.5	100	0	0
氯离子	91000	23.79~56.8	0	5.68~149.1	100	0	0

表 6.3-2 地块土壤检出污染物分析统计表

6.3.3.3 土壤有机污染物及特征污染物检测结果分析

本次送检的 31 个土壤样品(其中土壤平行样 3 个)均检测了 27 种挥发性有机物、11 种半挥发性有机物以及石油烃(C₁₀~C₄₀)指标。

检测结果表明,地块内石油烃有检出,最大占标率为 0.9%,地块外石油烃最大占标率为 0.3%。所有送检样品中 27 种挥发性有机物、11 种半挥发性有机物均未检出。

综上,与《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 (GB36600-2018)中第二类用地筛选值以及美国 EPA 通用土壤筛选值进行比较,本 地块及对照点所有土壤样品各项指标检测值均低于相应标准中的筛选值,满足工业 用地需求。

6.4 地下水检测结果与评价分析

6.4.1 地下水检测结果汇总

本次调查在地块内设置 3 个地下水采样点,地块外设置 1 个地下水对照点,共计送检地下水样品 5 份(其中 1 个地下水平行样)。实验室分析数据汇总见表 6.4-1,其中未列出项均为未检出,详细数据见文本附件 3 检验检测报告。

表 6.4-1 地下水样品污染检出情况表

). V		• •		/0.	_,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
检测项目			检测点位	XXX		标准值	单位
位侧坝日	DW1	DW1P	DW2	DW3	DW4	孙 在祖	半世
pH 值	7.7	7.7	7.6	7.1	7.5	Ⅳ类标准: 5.5≤pH≤6.5 8.5 <ph≤9.0 Ⅲ类标准: 6.5≤pH<8.5</ph≤9.0 	无量纲
色度	10	(4)	6	8	9	≤25	度
嗅和味	无	无	无	无	无	无	
浑浊度	35	35	40	33	37	≤10	NTU
肉眼可见 物	无	无	无	无	无	无	5 7-
总硬度	1.4×10^3	1.38×10 ³	324	640	167	≤650	mg/L
溶解性总 固体	1.96×10 ³	_	536	506	422	≤2000	mg/L
硫酸盐	688	702	41	289	15	≤350	mg/L
耗氧量	10.8	10.9	2.09	5.41	3.76	≤10.0	mg/L
氨氮	3.95	3.58	1.17	1.34	1.06	≤1.50	mg/L
挥发酚	0.0018	0.0017	0.0007	0.0014	ND	≤0.01	mg/L
硝酸盐氮	17.5	17.8	0.46	0.76	0.14	≤30.0	mg/L
亚硝酸盐 氮	2.12	2.03	0.009	0.244	0.017	≤4.80	mg/L
氰化物	0.010	0.009	ND	ND	ND	≤0.1	mg/L
氟化物	1.33	1.40	0.57	0.55	0.44	≤2.0	mg/L
碘化物	0.44	0.47	0.07	0.12	0.08	≤0.50	mg/L
总大肠菌 群	ND	/\D'	ND	13	13	≤100	MPN/100mL
菌落总数	2.7×10^3	_	3.8×10 ³	5.1×10^3	8.0×10 ³	≤1000	cfu/mL
氯化物	1.12×10 ³	1.12×10 ³	108	406	107	≤350	mg/L
砷	3.16×10 ⁻³	3.14×10 ⁻³	9.5×10 ⁻⁴	7.0×10 ⁻⁴	2.76×10 ⁻³	≤0.05	mg/L

		<i>70.</i>						
检测项目		100	检测点位			标准值	单位	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DW1	DW1P	DW2	DW3	DW4	7小1年1日	平位	
镉	3.61×10 ⁻³	3.71×10 ⁻³	3.3×10 ⁻⁴	9.84×10 ⁻³	ND	≤0.01	mg/L	
铅	1.4×10 ⁻⁴	1.310-4	ND	ND	ND	≤0.10	mg/L	
铁	0.02	0.02	ND	ND	0.01	≤2.0	mg/L	
锰	0.31	0.30	1.24	1.93	0.49	≤1.50	mg/L	
铝	0.029	0.024	ND	0.014	0.016	≤0.50	mg/L	
硒	0.0173	0.0170	1.05×10 ⁻³	1.71×10 ⁻³	ND	≤0.1	mg/L	
锌	0.013	0.014	ND	0.017	0.016	≤5.00	mg/L	
锡	8.36×10 ⁻³	8.90×10 ⁻³	0.096	0.0778	0.0225	≤22	mg/L	
汞	7.98×10 ⁻⁵	9.32×10 ⁻⁵	9.32×10 ⁻⁵	ND	ND	≤0.002	mg/L	
钠	191	197	40.9	139	119	≤400	mg/L	
石油烃 (C ₁₀ - C ₄₀)	0.47	0.49	0.04	0.15	0.11	≤1.2	mg/L	
三氯甲烷	8.7	8.4	ND	5.4	ND	≤300	μg/L	
萘	0.029	0.029	ND	0.013	0.034	≤600	μg/L	
苯并[b]荧 蒽	ND	ND	0.010	ND	ND	≤8.0	μg/L	
苯并[k]荧 蔥	ND	ND	0.004	ND	ND	≤48	μg/L	
苯并[a]芘	ND	ND	0.004	ND	ND	≤0.50	μg/L	
二苯并[a,h] 蒽	ND	ND	0.006	ND	ND	≤0.48	μg/L	

6.4.2 地下水检测结果分析和评价

本次调查地下水样品分析结果汇总如表 6.4-2 所示。

表 6.4-2 地块地下水检出污染物分析统计表

分析物	评价标准 IV类	背景点浓 度范围	背景点超标率(%)	地块内浓度范围	检出率 (%)	超标率 (%)	最大超标倍数
pH 值	5.5≤pH≤6.5 8.5 <ph≤9.0 (Ⅲ类标准: 6.5≤pH<8.5)</ph≤9.0 	7.5	0	7.1~7.7	100	0	0
色度	≤25 度	9	0	6~10	100	0	0
浑浊度	≤10NTU	37	0	33~40	100	0	0
总硬度	≤650mg/L	167	0	324~ 1.4 × 10 ³	100	40	1.2
溶解性总固体	≤2000mg/L	422	0	506~1.96×10 ³	100	0	0

		7/3 x /					
硫酸盐	≤350mg/L	15	0	41~702	100	40	1.0
耗氧量	≤10.0mg/L	3.76	0	2.09~10.9	100	40	0.09
氨氮	≤1.50mg/L	1.06	0	1.17~ 3.95	100	40	1.6
挥发酚	≤0.01mg/L	ND	0	0.0007~0.0018	100	0	0
硝酸盐氮	≤30.0mg/L	0.14	0	0.46~17.5	100	0	0
亚硝酸盐氮	≤4.80mg/L	0.017	0	0.009~2.12	100	0	0
氰化物	≤0.1mg/L	ND	0	ND~0.010	33.3	0	0
氟化物	≤2.0mg/L	0.44	0	0.55~1.33	100	0	0
碘化物	≤0.50mg/L	0.08	0	0.07~0.44	100	0	0
总大肠菌群	≤100MPN/100mL	13	0	ND~13	33.3	0	0
菌落总数	≤1000cfu/mL	8.0×10 ³	100	$2.7 \times 10^3 \sim 5.1 \times 10^3$	100	100	4.1
氯化物	≤350mg/L	107	0	108~ 1.12 × 10 ³	100	75	2.2
砷	≤0.05mg/L	2.76×10 ⁻³	0	7.0×10 ⁻⁴ ~3.16×10 ⁻³	100	0	0
镉	≤0.01mg/L	ND	0	3.3×10 ⁻⁴ ~9.84×10 ⁻³	100	0	0
铅	≤0.10mg/L	ND	0	ND~1.4×10 ⁻⁴	33.3	0	0
铁	≤2.0mg/L	0.01	0	ND~0.02	33.3	0	0
锰	≤1.50mg/L	0.49	0	0.31~ 1.93	100	33.3	0.3
铝	≤0.50mg/L	0.016	0	ND~0.014	66.7	0	0
硒	≤0.1mg/L	ND	0	1.05×10 ⁻³ ~0.0173	100	0	0
锌	≤5.00mg/L	0.016	0	ND~0.017	66.7	0	0
锡	≤22mg/L	0.0225	0	8.36×10 ⁻³ ~0.0778	100	0	0
汞	≤0.002mg/L	ND	0	ND~9.32×10 ⁻⁵	66.7	0	0
钠	≤400mg/L	119	0	40.9~197	100	0	0
石油烃 (C ₁₀ - C ₄₀)	≤1.2mg/L	0.11	0	0.04~0.49	100	0	0
三氯甲烷	≤300μg/L	ND	0	ND~8.7	66.7	0	0
萘	≤600μg/L	0.034	0	ND~0.029	66.7	0	0
苯并[b]荧蒽	≤8.0μg/L	ND	0	ND~0.010	33.3	0	0
苯并[k]荧蒽	≤48μg/L	ND	0	ND~0.004	33.3	0	0
苯并[a]芘	≤0.50μg/L	ND	0	ND~0.004	33.3	0	0
二苯并[a,h] 蒽	≤0.48μg/L	ND	0	ND~0.006	33.3	0	0
	/> /				7/33		

本次送检的5个地下水样品(其中1个地下水平行样),检测了地下水常规指

标、重金属指标、VOCs、SVOCs、石油烃(C_{10} ~ C_{40})、锡、氯,检测结果见表 6.4-1 和检测报告(文本附件 3),各指标分析统计见表 6.3-2。

检测结果表明,本场地内受检样品中除总硬度、硫酸盐、耗氧量、氨氮、菌落总数、氯化物、锰外其余各指标均未超过《地下水质量标准》(GB/T14848-2017) IV 类水质标准限值、《上海市建设用地地下水污染风险管控筛选值补充指标》中第二类用地筛选值以及美国 EPA 通用筛选值中地下水标准。

对照点监测并指标除菌落总数外,其余各指标均未超过《地下水质量标准》(GB/T14848-2017) IV 类水质标准限值、《上海市建设用地地下水污染风险管控筛选值补充指标》中第二类用地筛选值以及美国 EPA 通用筛选值中地下水标准。

场地内地下水超标污染物中的总硬度、硫酸盐、耗氧量、氨氮、菌落总数属于 生活类污染指标,且对照背景监测值井中菌落总数均超标,可判断总硬度、硫酸盐、 耗氧量、氨氮、菌落总数主要受周边生活类污染源影响为主。场地内地下水超标污 染物中的氯化物、锰是由于区域地质原因造成。

6.5 检测分析结论

6.5.1 土壤结果分析和评价

土壤依据《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地风险筛选值以及美国 EPA 通用土壤筛选值判断,原则上污染物检出浓度如超过筛选值,则判定为土壤关注污染物。

本次土壤污染状况初步调查共布设7个土壤采样点位(其中1个对照土壤采样点位),共计送检31个土壤样品(其中3个土壤平行样)。地块内所有点位土壤采样点位的样品中检测因子(重金属及无机物、挥发性有机污染物、半挥发性有机污染物、石油烃(C₁₀~C₄₀)、锡、氯)均低于《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选值、美国 EPA 通用土壤筛选值。地块外对照点土壤样品中,所检出物质的种类与地块内土壤样品中检出物质种类基本一致,且浓度均未超过相关评价标准。

6.5.2 地下水结果分析和评价

地下水依据《地下水质量标准》(GB/T 14848-2017)IV 类标准、《上海市建设 用地地下水污染风险管控筛选值补充指标》中第二类用地地下水筛选值以及美国 EPA 通用筛选值地下水标准判断。

本次土壤污染状况初步调查共布设 4 个地下水采样点位(其中 1 个对照地下水采样点位),共计送检 5 个地下水样品(其中 1 个地下水平行样)。根据检测结果,地块内除总硬度、硫酸盐、耗氧量、氨氮、菌落总数、氯化物、锰外其余地下水的检测因子均低于《地下水质量标准》(GB/T 14848-2017)IV 类标准、《上海市建设用地地下水污染风险管控筛选值补充指标》中第二类用地地下水筛选值以及美国EPA 通用筛选值地下水标准。地块外对照地下水样品中,所检出物质与地块内地下水样品中检出物质种类基本一致,且除菌落总数外其余浓度均未超过相关评价标准。

展儿子同期

7 结论

7.1 土壤状况调查结论

7.1.1 第一阶段土壤污染状况调查结果

地块内湖州市重兆吴兴化工有限公司已于 2017 年 9 月停产,生产年限主要集中在 1995~2021 年时间段。根据本地块及地块周边存在过的历史企业分布和生产类型分析,本地块涉及的主要特征污染物包括氯甲烷、锡、苯并[a]芘、汞、砷、石油烃、SO₂、NO_x。本地块第一阶段调查难以排除地块内存在过的工业企业对本地块造成污染的可能性,故需要开展第二阶段初步采样分析工作,进一步查明地块土壤污染状况。

7.1.2 第二阶段土壤污染状况调查结果

(1) 水文地质调查结果

根据本次调查的现场土孔钻探记录可知,本次调查的土层从上至下依次为杂填 土、粘土、淤泥质粘土、粘土,与引用的地勘资料的土层结构基本一致。具体土层 情况为:

杂填土:杂色,无气味,潮,深度为 0~1.5m,场地中所有钻孔中均有揭露。

粘土: 棕灰色, 无气味, 潮~湿, 深度为 0.3~3.3m, 场地中所有钻孔中均有揭露。淤泥质粘土: 灰色, 无气味, 湿, 深度为 2.8~4.7m, 场地中所有钻孔中均有揭露。

粘土: 灰色, 无气味, 湿, 深度为 4.1~6.0m, 场地中所有钻孔中均有揭露。现场采样期间测量的地块内地下水位高程在 3.65m~4.5m, 地块内整体地下水流向趋势主要为自西南向东北流动。

(2) 土壤调查结果

本次土壤污染状况初步调查共布设7个土壤采样点位(其中1个对照土壤采样点位),共计送检31个土壤样品(其中3个土壤平行样)。地块内所有点位土壤采样点位的样品中检测因子(重金属及无机物、挥发性有机污染物、半挥发性有机污染物、石油烃(C₁₀~C₄₀)、氯、锡)均低于《土壤环境质量 建设用地土壤污染风险

管控标准(试行)》(GB36600-2018)中第二类用地筛选值、美国 EPA 通用土壤筛选值。地块外对照点土壤样品中,所检出物质的种类与地块内土壤样品中检出物质种类基本一致,且浓度均未超过相关评价标准。

(3) 地下水调查结果

本次土壤污染状况初步调查共布设 4 个地下水采样点位(其中 1 个对照地下水采样点位),共计送检 5 个地下水样品(其中 1 个地下水平行样)。根据检测结果,地块内除总硬度、硫酸盐、耗氧量、氨氮、菌落总数、氯化物、锰外其余地下水的检测因子均低于《地下水质量标准》(GB/T 14848-2017)IV 类标准、《上海市建设用地地下水污染风险管控筛选值补充指标》中第二类用地地下水筛选值以及美国EPA 通用筛选值地下水标准。地块外对照地下水样品中,所检出物质与地块内地下水样品中检出物质种类基本一致,且除菌落总数外其余浓度均未超过相关评价标准。

7.1.3 总体结论

综上所述,湖州市重兆吴兴化工有限公司地块目前为工业用地性质,土壤环境 状况按照二类用地标准评价。根据上述调查结果,湖州市重兆吴兴化工有限公司地 块土壤环境现状满足工业用地(第二类用地)需求,无需进一步开展土壤污染状况 详细调查工作。

7.2 建议

- (1) 地块内土壤部分指标含量偏高,但均未超过二类用地标准筛选值,建议后期土地开发利用过程中对检出值较高点位所在区域加强环境监测。
- (2)根据现场调查,地块周边分布有诸多敏感目标存在,建议在地块开发利用 前加强对地块内地下水监测井的安全管理,进行定期环境监测。

7.3 不确定性分析

(1)本次调查所得到的数据是根据有限数量的采样点所获得,尽可能客观的反应地块污染物分布情况,但受采样点数量、采样点位置、采样深度等因素限制,所获得的污染物空间分布和实际情况会有所偏差。地块内部分土壤样品镉检出值较高,由于污染物在地块土壤内为不规则分布,本次调查所采集的样品和分析数据不一定

能代表场地内的极端情况。

- (2)本地块无具体地勘资料,报告中引用附近地块的地勘资料,由于地层结构复杂性、地下水分布季节性、土壤异质性、污染羽不匀性等原因,难以保证地块内其他采样点能够得到完全一致的调查结果,也不一定能反映地块调查的极端结果。
- (3)由于地块及周边历史生产企业和用地情况资料收集较为困难,部分资料通过人员访谈获取,收集到的部分历史资料可能存在一定的局限和偏差,历史资料时效性和准确性也会影响本次场调的评价结果。

展以高挑